题名

垂直式靜水池之力學分析與捲氣模擬

并列篇名

NUMERICAL INVESTIGATIONS FOR AIR-ENTRAINMENT TRANSLATIONS, PRESSURE DISTRIBUTIONS AND SHEAR-STRESS VARIATIONS OF FREE OVERFALL IN A VERTICAL DROP POOL

DOI

10.6652/JoCICHE.201706_29(2).0007

作者

邱家麟(Chia-Lin Chiu);范佳銘(Chia-Ming Fan);欉順忠(Shun-Chung Tsung)

关键词

自由跌水 ; 滑流 ; 水舌流 ; 週期性振盪流 ; free overfall ; nappe flow ; periodic oscillatory flows ; skimming flow

期刊名称

中國土木水利工程學刊

卷期/出版年月

29卷2期(2017 / 06 / 01)

页次

127 - 137

内容语文

繁體中文

中文摘要

自由跌水落入垂直式靜水池是常見的水利工程現象,根據水流流量與池內幾何尺寸不同,流場大致上可以分為滑流、週期性振盪流與水舌流這三種不同特性的流況。在流場週期振盪的過程中,靜水池周遭結構受到滑流與水舌流反覆撞擊的流體作用力大小,是相關工程強度設計中重要的考慮因素;而大量的空氣被捲入水中產生氣泡則是另一個非常複雜而有趣的物理現象。本研究利用納維耳-史托克斯模式進行這三種流場的數值分析,針對靜水池底部與下游尾檻表面所受到的流體壓應力與剪應力分別進行討論,並且追蹤水中捲氣在週期振盪過程中的傳輸變化行為。

英文摘要

The flow regimes of free overfall in a vertical drop pool can be mainly classified into skimming, nappe and periodic oscillatory flows depending upon different discharges and pool dimensions. A very interesting phenomenon is lots of air entrained into the water flow as little foam or bubbles during the oscillatory process. In addition, investigation of distributions of pressures and shear stress acting on the solid surface is another important concern for the design strength of such hydraulic structure. In this study, the Navier-Stokes simulations are implemented to investigate the effect of various plunge pool lengths on the flow conditions with a fixed subcritical approach flow. To characterize the flow regimes of flow over a drop pool, special attention is given to the air-entrainment translation and the pressure with shear-stress distribution along the pool bottom and the sill surface.

主题分类 工程學 > 土木與建築工程
工程學 > 水利工程
工程學 > 市政與環境工程
参考文献
  1. Barkhudarov, M. R., “Lagrangian VOF advection method for FLOW-3D,” Flow Science Technical Note, Santa Fe, New Mexico (2004).
  2. Bombardelli, F. A.,Meireles, I.,Matos, J.(2011).Laboratory measurements and multi-block numerical simulations of the mean flow and turbulence in the non-aerated skimming flow region of steep stepped spillways.Environmental Fluid Mechanics,11(3),263-288.
  3. Chanson, H.(1994).Hydraulics of skimming flows over stepped channels and spillways.Journal of Hydraulic Research,32(3),445-460.
  4. Chiu, C. L.,Fan, C. M.,Tsung, S. C.(2017).Numerical modeling for periodic oscillation of free overfall in a vertical drop pool.Journal of Hydraulic Engineering, ASCE,143(1),04016077.
  5. Chiu, C. L.,Fan, C. M.,Young, D. L.(2009).3D hybrid Cartesian/immersed-boundary finite-element analysis of heat and flow patterns in a two-roll mill.International Journal of Heat and Mass Transfer,52(7-8),1677-1689.
  6. Fadlun, E. A.,Verzicco, R.,Orlandi, P.,Mohd-Yusof, J.(2000).Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations.Journal of Computational Physics,161(1),35-60.
  7. Ferziger, J. H.,Peric, M.(2002).Computational Methods for Fluid Dynamics.Berlin:Springer.
  8. Flow Science, Inc.(2014).FLOW-3D User’s Manual.Santa Fe, New Mexico:Flow Science, Inc..
  9. Gilmanov, A.,Sotiropoulos, F.,Balaras, E.(2003).A general reconstruction algorithm for simulating flows with complex 3D immersed boundaries on Cartesian grids.Journal of Computational Physics,191(2),660-669.
  10. Hirt, C. W., “Modeling turbulent entrainment of air at a free surface,” FLOW-3D Technical Note, 61, Santa Fe, New Mexico (2003).
  11. Hirt, C. W.,Nichols, B. D.(1981).Volume of fluid (VOF) method for the dynamics of free boundaries.Journal of Computational Physics,39(1),201-225.
  12. Li, C. C.(2007).Taichung, Taiwan,Department of Civil Engineering, National Chung Hsing University.
  13. Lin, C.,Hsieh, S. C.,Kuo, K. J.,Chang, K. A.(2008).Periodic oscillation caused by a uniform flow over a vertical drop energy dissipator.Journal of Hydraulic Engineering, ASCE,134(7),948-960.
  14. Lin, C.,Hsieh, S. C.,Lin, W. J.,Chou, S. H.,Raikar, R. V.(2012).Flow field in a skimming flow over a vertical drop without end-sill.Journal of Mechanics,28(4),607-626.
  15. Lin, C.,Jaung, R. H.,Hsieh, S. C.(2003).Study on the characteristics of periodic oscillation flow over a vertical drop energy-dissipator.Journal of the Chinese Institute of Civil and Hydraulic Engineering,15(1),107-124.
  16. Meireles, I. C.,Bombardelli, F. A.,Matos, J.(2014).Air entrainment onset in skimming flows on steep stepped spillways: An analysis.Journal of Hydraulic Research,52(3),375-385.
  17. Moore, W. L., “Energy loss at the base of a free overfall,” Transactions, ASCE, Vol. 108, No. 1, pp. 1343-1360 (1943).
  18. Rajaratnam, N.,Chamani, M. R.(1995).Energy loss at drops.Journal of Hydraulic Research,33(3),373-384.
  19. Rand, W.(1955).Flow geometry at straight drop spillways.Proceedings, ASCE,81(791),1-13.
  20. Rouse, H., “Discharge characteristics of the free overfall,” Civil Engineering, Vol. 6, No. 4, pp. 257-260 (1936).
  21. Tsai, C. P.,Yen C. C.,Lin, C.(2014).Simulations on skimming flow over a vertical drop pool.Journal of Engineering Mechanics, ASCE,140(7),04014044.
  22. Tsung, S. C.,Lai, J. S.,Wang, H. W.(2015).Oscillating water surface measurement of free overfall with a plunge pool.Journal of Flow Control, Measurement & Visualization,3(3),87-105.
  23. Wang, C. Y.,Cheng, J. H.,Ye, M. J.,Shih, H. P.(2010).Experimental study of free overfall for river preventive works.Journal of Taiwan Water Conservancy,58(4),82-93.
  24. White, M. P., “Discussion of ‘Energy loss at the base of a free overfall’ by W. L. Moore,” Transactions, ASCE, Vol. 108, No. 1, pp. 1361-1364 (1943).
  25. Wu, S.,Rajaratnam, N.(1998).Impinging jet and surface flow regimes at drop.Journal of Hydraulic Research,36(1),69-74.