题名

跨斷層國道三號田寮3號橋與中寮隧道北口段變形機制

并列篇名

THE MECHANISM OF DEFORMATION ON TIAN-LIAO NO. 3 VIADUCT AND CHUNG-LIAO TUNNEL

DOI

10.6652/JoCICHE.201803_30(1).0002

作者

李健宏(Chien-Hung Li);詹佩臻(Pei-Chen Chan);吳亮均(Liang-Chun Wu);林銘郎(Ming-Lang Lin)

关键词

逆斷層 ; 背衝斷層 ; 三角剪切帶 ; 分離元素法(PFC3D) ; 斷層與結構互制 ; thrust fault ; back thrust fault ; trishear zone ; discrete element method PFC3D ; fault and sturcture interaction

期刊名称

中國土木水利工程學刊

卷期/出版年月

30卷1期(2018 / 03 / 01)

页次

17 - 28

内容语文

繁體中文

中文摘要

國道三號田寮3號橋及中寮隧道分別跨越車瓜林斷層及旗山斷層,自民國89年通車迄今因持續的變形,在多次維修後仍無法有效改善。本研究利用分離元素法PFC3D (Particle Flow Code 3 Dimension)軟體建立斷層與橋梁、隧道互制模型,引入結構與風化泥岩材料的力學參數,模擬車瓜林斷層相對位移所引致之風化泥岩變形與結構互制行為。本研究顯示,車瓜林斷層於較深處之相對位移,造成風化泥岩之三角剪切帶(Trishear Zone)變形及其伴生之背衝斷層(Back Thrust Fault),可以用來解釋國道三號田寮3號橋與中寮隧道北口段變形特徵。研究更進一步探究跨斷層結構物互制行為之參數分析,成果顯示風化泥岩材料性質、斷層傾角、風化泥岩厚度、改變斷層尖端位置及橋梁基礎埋置深度等不同條件,不僅影響風化泥岩三角剪切帶變形範圍,亦使結構產生不同之變形量,橋梁結構位於三角剪切帶(塑性區)時影響最大;另針對本工程案例在適當的簡化及討論變因條件下,不同橋梁上部結構型式受逆斷層作用之功能表現得知,多跨連續橋梁以非固接於墩柱之設計較固接連續梁及簡支梁有好的表現。

英文摘要

Tian-Liao No. 3 Viaduct on the National Highway No. 3, and Chung-Liao Tunnel cross Chekualin Fault and Chishan Fault respectively. Due to continuous deformation, they have not been improved efficiently even if repeated maintenance since it opened to traffic in 2000 till now. In this study, the software PFC3D (Particle Flow Code 3 Dimension) of the discrete element method was used to establish the model of the interaction between the fault and the bridge/tunnel. The mechanical parameters of the structure and the material of soil layer were also introduced to simulate the interaction behavior between the overburden soil and the structure which is caused by the relative displacement of Chekualin Fault. This study shows that the relative displacement at the deeper level of Chekualin Fault causes the deformation of the trishear zone at the shallow mudstone and accompanied back thrust fault, and it may be used as an interpretation for the deformation characteristics of Tian-Liao No. 3 Viaduct on the National Highway No. 3, or Chung-Liao Tunnel. This study further discusses the parametric analysis for the interaction behavior of the cross-fault structure. The results demonstrate some varying conditions such as material properties of overburden, fault angle, an overburden thickness, changing the fault tip's position and embedment depth of foundation, etc... They not only affect the deformation range of the trishear zone at upper overburden soil, but also different deformation of the structure; where the bridge structure located in the trishear zone (plastic zone) has the greatest influence. In addition, from the performance of the varying superstructure which is acted by the thrust fault, we may learn that the design of bridges with continuous multi-span and non-fixed-joint pier studs leads to better performance than that of fixed-joint continuous beams and simply beams.

主题分类 工程學 > 土木與建築工程
工程學 > 水利工程
工程學 > 市政與環境工程
参考文献
  1. Anastasopoulos, I.,Gazetas, G.(2010).Analysis of cut-and-cover against large tectonic deformation.Bulletin of Earthquake Engineering,8,283-307.
  2. Anastasopoulos, I.,Kourkoulis, R.,Gazetas, G.,Tsatsis, A.(2013).Interaction of piled foundation with a rupturing normal fault.Géotechnique,63,1042-1059.
  3. Baziar, M. H.,Nabizadeh, A.,Lee, C. J.,Hung, W. Y.(2014).Centrifuge modeling of interaction between reverse faulting and tunnel.Soil Dynamics and Earthquake Engineering,65,151-164.
  4. Bray, J. D.(2001).Developing mitigation measures for the hazards associated with earthquake surface fault rupture.Proceedings of Workshop on Seismic Fault-Induced Failures,Tokyo:
  5. Burridge, P. B.,Scott, R. F.,Hall, J. F.(1989).Centrifuge study of faulting effects on tunnel.Journal of Geotechnical Engineering, ASCE,115(7),949-967.
  6. Chang, Y. Y.,Lee, C. J.,Hung, W. C.,Hung, W. J.,Lin, M. L.,Hung, W. Y.,Lin, Y. H.(2013).Use of centrifuge experiments and discrete element analysis to model the reverse fault slip.Internatial Journal of Civel Engineering,11(2),79-89.
  7. Chang, Y. Y.,Lee, C. J.,Hung, W. C.,Hung, W. Y.,Lin, M. L.,Hung, W. J.,Chen, Y. H.(2015).Evolution of the surface deformation profile and subsurface distortion zone during reverse faulting through overburden sand.Engineering Geology,184,52-70.
  8. Chen, W. S.,Lee, L. S.,Yang, C. C.,Liu, L. H.,Chen, Y. C.(2003).Field Report of Central Geological SurveyField Report of Central Geological Survey,Taiwan:.
  9. Dong, J.J.,Wang, C.D,Lee, C.T.,Liao, J.J.,Pan, Y.W.(2003).The influence of surface ruptures on building damage in the 1999 Chi-Chi earthquake.Engineering Geology,71,157-179.
  10. Kelson, K. I.,Kang, K. H.,Page, W. D.,Lee, C. T.,Cluff, L. S.(2001).Representative styles of deformation along the Chelungpu Fault from the 1999 Chi-Chi (Taiwan) earthquake: Geomorphic characteristics and responses of man-made structures.Bulletin Seismolgical Society America,91(5),930-952.
  11. Konagai, K.(2005).Data archives of seismic fault induced damage.Journal of Soil Dynamics and Earthquake Engineering,25,559-570.
  12. Kontogianni, V. A.,Stiros, S. C.(2003).Earthquakes and seismic faulting: Effects on tunnels.Turkish Journal of Earth Sciences,12,153-156.
  13. Lin, M. L.,Chung, C. F.,Jeng, F. S.(2006).Deformation of overburden soil induced by thrust fault slip.Engineering Geology,88,70-89.
  14. Lin, M. L.,Chung, C. F.,Jeng, F. S.,Yao, T. C.(2007).The deformation of overburden soil induced thrust faulting and its impact on underground tunnels.Engineering Geology,92,110-132.
  15. Prentice, C. S.,Ponti, D. J.(1997).Coseismic deformation of the Wrights tunnel during the 1906 San Francisco earthquake: A key to understanding 1906 fault slip and 1989 surface ruptures in the southern Santa Cruz mountains.Journal of Geophysical Research,102(B1),635-648.
  16. Ulusay, R.,Aydan, R.,Hamada, M.(2001).The behaviour of structure built on active fault zones: Examples from the recent earthquakes of Turkey.Proceeding of Workshop on Seismic Fault-Induced Failures,Tokyo:
  17. Wang, W. L.,Wang, T. T.,Su, J. J.,Lin, C. H.,Seng, C. R.(2001).Assessment of damages in mountain tunnels due to the Taiwan Chi-Chi earthquake.Tunnels and Undergound Space Technology,16(3),133-150.
  18. 交通部(2012)。,未出版
  19. 交通部公路總局第四區養護工程處(2010)。,未出版
  20. 吳杰祐(2008)。臺北,國立臺灣大學土木工程學研究所。
  21. 吳亮均(2017)。臺北,臺灣大學土木工程學研究所。
  22. 李錫堤,康耿豪,鄭錦桐,廖啟雯(2000)。921 集集大地震之地表破裂及地盤變形現象。地工技術,81,5-18。
  23. 周鴻昇,楊清源,謝百鍾,余明山,高耀宏(2000)。南投地區地工震災調查與分析。地工技術,81,69-84。
  24. 林呈,孫洪福(2000).見證 921 集集大地震.臺北:麥格羅希爾.
  25. 林啟文,游鎮源,洪國騰,周稟珊(2012)。臺灣南部臺南-高雄泥岩區的地質構造研究。經濟部中央地質調查所彙刊,25,143-174。
  26. 陳正旺(2005)。台北,臺灣大學土木工程研究所。
  27. 陳俊价(2008)。臺南,成功大學土木工程研究所。
  28. 經濟部中央地質調查所(2014).五萬分之一臺灣地質圖.經濟部中央地質調查所.
  29. 經濟部中央地質調查所(2012)。2012 年版台灣活動斷層分布圖。中央地質調查所特刊,26
被引用次数
  1. 蘇進國,鄧文廣,趙國宏,楊秉順,陳松堂,洪曉慧,林宏軒,宋裕祺(2020)。跨越池上斷層之玉里大橋長期潛動分析研究。中國土木水利工程學刊,32(1),101-115。