题名

ESTIMATION OF THE SPECIFIED TIME SCALE FOR MASS TRANSPORT IN A TIDAL ESTUARY

并列篇名

感潮河口質量傳輸之特定時間尺度估計

DOI

10.6652/JoCICHE.201803_30(1).0005

作者

楊方泊源(Fang-Po-Yuan Yang);黃良雄(Liang-Hsiung Huang);林孟郁(Meng-Yu Lin);張正緯(Cheng-Wei Chang)

关键词

specified time scale ; advection-dispersion equation ; tidal estuaries ; semi-analytical method ; 特定時間尺度 ; 移流-延散方程式 ; 感潮河口 ; 半解析方法

期刊名称

中國土木水利工程學刊

卷期/出版年月

30卷1期(2018 / 03 / 01)

页次

51 - 59

内容语文

英文

中文摘要

The purpose of this paper is to estimate the specified time scale of mass transport in a tidal estuary, which could be used to simplify the difficulties in modeling mass transport in a tidal estuary. A mathematical model comprising a 1-D co-oscillating tide flow-field formulation and a 1-D advection-dispersion equation was designed. The co-oscillating tide model was solved using linear Airy wave theory. The advection-dispersion equation was solved by applying an image method and using a finite Fourier transform with a weak derivative assumption, followed by numerical evaluation using the Runge-Kutta method. An approximate time-scale relationship was then obtained by applying the dimensional technique to the governing equations. Finally, using the numerical verifications of the semi-analytical solutions, the rationality of the time-scale relationship was confirmed. The implications of these results are discussed.

英文摘要

本文章之目的為尋求適用於感潮河口質量傳輸之特定時間尺度,其可簡化感潮河口質量傳輸問題的困難度。文中以一維的共振潮汐流場和一維的移流-延散方程式構成研究模型。其中,一維的共振潮汐流場採用線性波理論求解;一維的移流-延散方程式則利用映像法配合有限傅立葉變換,引入弱微分之假設,並使用龍格-庫塔法求得半解析解。爾後,藉由因次分析的技巧找尋近似的時間尺度關係,並以前述半解析解驗證其合理性,以及探討其意義。

主题分类 工程學 > 土木與建築工程
工程學 > 水利工程
工程學 > 市政與環境工程
参考文献
  1. Ames, W. F.(Ed.)(1965).Nonlinear Partial Differential Equations in Engineering.Academic Press.
  2. Bhrawy, A. H.,Baleanu, D.(2013).A spectral Legendre–Gauss–Lobatto collocation method for a space-fractional advection diffusion equations with variable coefficients.Reports on Mathematical Physics,72(2),219-233.
  3. Bowden, K. F.,Gilligan, R. M.(1971).Characteristic features of estuarine circulation as represented in the Mersey estuary.Limnology and Oceanography,16(3),490-502.
  4. Bulut, H.,Akturk, T.,Ucar, Y.(2013).The solution of advection diffusion equation by the finite elements method.Convergence,2,9.
  5. Dean, R. G.,Dalrymple, R. A.(1991).Water Wave Mechanics for Engineers and Scientists, Vol. 2.World Scientific Publishing Company.
  6. Elghaoui, M.,Pasquetti, R.(1996).A spectral embedding method applied to the advection–diffusion equation.Journal of Computational Physics,125(2),464-476.
  7. Fischer, H. B.,List, J. E.,Koh, C. R.,Imberger, J.,Brooks, N. H.(1979).Mixing in Inland and Coastal Waters.Academic Press.
  8. Guerrero, J. P.,Skaggs, T. H.(2010).Analytical solution for one-dimensional advection-dispersion transport equation with distance-dependent coefficients.Journal of Hydrology,390(1-2),57-65.
  9. Hsieh, P. C.,Shih, W. P.,Huang, L. H.(2002).Transient deformation of a poroelastic channel bed.International Journal for Numerical and Analytical Methods in Geomechanics,26(13),1279-1298.
  10. Le Méhauté, B.(1969).An Introduction to Hydrodynamics and Water Waves, Volume II: Water Wave Theories.
  11. Logan, J. D.(2013).Applied Mathematics.John Wiley & Sons.
  12. Mei, C. C.,Chian, C.(1994).Dispersion of small suspended particles in a wave boundary layer.Journal of Physical Oceanography,24(12),2479-2495.
  13. Ng, C. O.,Wu, C. H.(2008).Dispersion of suspended particles in a wave boundary layer over a viscoelastic bed.International Journal of Engineering Science,46(1),50-65.
  14. Okubo, A.(1973).Effect of shoreline irregularities on streamwise dispersion in estuaries and other embayments.Netherlands Journal of Sea Research,6(1-2),213-224.
  15. Porshokouhi, M. G.,Rahimi, B.(2011).Analytical approach to the one-dimensional advection-diffusion equation using homotopy perturbation method.International Journal of Mathematical Archive,2(9)
  16. Sneddon, I. N.(1972).The Use of Integral Transforms.McGraw-Hill Companies.
  17. Taylor, G.(1954).The dispersion of matter in turbulent flow through a pipe.Proceedings of the Royal Society of London, Series A, Mathematical and Physical Sciences,223(1155),446-468.
  18. Tseng, C. M.,Tsai, T. L.,Huang, L. H.(2008).Effects of body force on transient poroelastic consolidation due to groundwater pumping.Environmental Geology,54(7),1507.
  19. White, F. M.,Corfield, I.(2006).Viscous Fluid Flow, Vol. 3.New York:McGraw-Hill.
  20. Zoppou, C.,Knight, J. H.(1997).Analytical solutions for advection and advection-diffusion equations with spatially variable coefficients.Journal of Hydraulic Engineering,123(2),144-148.