题名

Rigel VUX-1無人機光達點雲資料處理及精度評估

并列篇名

Rigel VUX-1 UAS LiDAR POINT CLOUD PROCESSING AND DATA ASSESSMENT

DOI

10.6652/JoCICHE.201903_31(1).0003

作者

王星為(Hsin-Wei Wang);江晉霆(Chin-Ting Chiang);彭德熙(Te-Hsi Peng);鄭鈺雯(Yu-Wen Cheng);余翠紋(Carol Yu);陳立邦(Leo Chen);謝有忠(Yu-Chung Hsieh);費立沅(Li-Yuan Fei);張國楨(Kuo-Jen Chang)

关键词

無人飛機系統 ; 光達 ; 點雲 ; 解析度 ; 精度 ; unmanned aircraft system (UAS) ; light detection and ranging (LiDAR) ; point cloud ; resolution ; precision

期刊名称

中國土木水利工程學刊

卷期/出版年月

31卷1期(2019 / 03 / 01)

页次

29 - 39

内容语文

繁體中文

中文摘要

無人機系統的持續穩定發展及雷射測距光達掃瞄系統的迷你化,以無人機搭載高精度光達測量系統成為一新穎且能快速取得空間資訊之技術。唯就本技術,因暫時受限於載具、任務風險及成本等諸多方面的因素,於國內外等產學界仍未大量使用於相關測繪工作。本研究結合Pulse Aerospace之無人直升機Vapor 55,以及Riegl之VUX-1 UAV光達系統,進行無人載具及光達系統之系統整合、飛航任務測試,以及掃瞄資料蒐集及資料處理,同時並進行現地地面測量,以評估光達系統資料之解析度、精度及誤差分析。另一方面並進行無人機影像測繪資料、既有空載光達掃瞄等資料之比較分析工作。本研究之設計掃瞄任務,以單一航帶下方近地點之點雲密度約159點/平方公尺之飛航參數來設計。所掃瞄之初步成果,首先以軌跡解算軟體Applanix POSPac MMS進行無人機之航跡解算,掃瞄之點雲以Riegl點雲處理軟體PiPROCESS來進行點雲之航線平差、拼接,以及點雲分類等工作。針對點雲資料,傳統上空載光達點雲的處理,一般常用Terrasolid之Terrascan, Terramatch等軟體來進行,前人文獻並建議點雲分類相關參數。本研究之基於無人機光達資料,同時運用不同參數進行無人機點雲分類之參數敏感性分析,以求取較為適當的點雲分類參數。藉由自動化的分類將點雲歸類為地面點與非地面點,所萃取之地面點雲密度大於100點/平方公尺,進而用以建置空間解析度高於10公分之數值高程模型。另以e-GNSS、RTK(Real Time Kinematic)及全測站三角三邊測量等現地測量成果,將現地量測之數據與無人機影像、無人機光達,以及空載光達等不同來源之數值地型模型,進行資料之比對與較差分析。模型結果顯示無人機光達之模型高程精度誤差小於5公分。透過本研究呈現無人機光達空間資料技術及精度,並可應用於高解析度測繪工作上。

英文摘要

The LiDAR sensor mounted on a UAV becomes a new powerful tool for geomatic technology. This study we integrate autonomous unmanned helicopter Pulse Aerospace Vapor 55, carrying Riegl VUX-1 UAV LiDAR with Trimble Applanix AP20 for the surveying mission. Based on the drone and instrument capacity, adjusted by the terrain landform, the optimal drone mission planning and scanning parameters are thus assigned, thus capable to acquire dense point clouds by 159 points/m^2 in nadir direction for a single fly line. To access the dataset, several software packages are used, including: the Trimble Applanix POSPac Mobile Mapping Suite software, GNSS-Aided Inertial post-processing for georeferencing data collected from UAS LiDAR. The Riegl RiPROCESS designed for managing, processing, analyzing, and visualizing and data export for the data acquired based on Riegl Laser Scanners. And finally, access and evaluate the dataset by means of Riegl RiPROCESS software for managing, processing, especially for fly-line adjustment and classification the UAS LiDAR point clouds, so as to compare the UAS dataset with the airborne's. The study tries to evaluate the parameters for fully-automatic point cloud classification by Terrascan, which is used regularly in Taiwan. This paper analyzes the influence and efficiency of different parameters for point cloud classification, to separates the non-ground point from the ground point so as to construct the digital elevation model. Finally, the density of the ground point is higher than 100 points/m^2, thus the spatial resolution of digital elevation model (DEM) is about 10 by 10cm. Compared with the data point measured from site surveying by e-GNSS, RTK (real time kinematic GPS survey) and total station, ground control points and check points, the elevation errors is less than five centimeters; thus the high resolution and high precision digital terrain models (DTMs) are capable to construct. UAS LiDAR point cloud after instrument calibration and flight trajectory adjustment, the surveying data acquisition can achieved as centimetric precision. According to the results, the technology of UAS LiDAR is capable and suitable for high resolution geoinfomatic studies and data acquisition.

主题分类 工程學 > 土木與建築工程
工程學 > 水利工程
工程學 > 市政與環境工程
参考文献
  1. 廖達峻,張國楨,曾志民,黃敏郎(2017)。應用無人飛行載具於山崩及河道變遷之量測分析—以來社溪為例。土木水利,44(2),67-73。
    連結:
  2. Amon, P.,Riegl, U.,Rieger, P.,Pfennigbauer, M.(2015).UAV-based laser scanning to meet special challenges in lidar surveying.Geomatics Indaba Proceedings
  3. Carter, B.,Shrestha, R. L.(2003).National center for airborne laser mapping proposed.EOS,84,281-285.
  4. Chan, Y. C.,Chen, Y. G.,Shih, T. Y.,Huang, C.(2007).Characterizing the Hsincheng active fault in northern Taiwan using airborne LiDAR data: detailed geomorphic features and their structural implications.Journal of Asian Earth Sciences,31,303-316.
  5. Chang, K. J.,Chan, Y. C.,Chen, R. F.,Hsieh, Y. C.(2010).Evaluation of tectonic activities using LiDAR topographic data: an example from the Nankan lineament, northern Taiwan.Terrestrial, Atmospheric and Oceanic Sciences,21,463-476.
  6. Chang, K. J.,Chan, Y. C.,Chen, R. F.,Hsieh, Y. C.(2018).Geomorphological evolution of landslides near an active normal fault in northern Taiwan, as revealed by lidar and unmanned aircraft system data.Nat. Hazards Earth Syst. Sci.,18,709-727.
  7. Chang, K. J.,Taboada, A.,Chan, Y. C.(2005).Geological and morphological study of the Jiufengershan landslide triggered by the Chi-Chi Taiwan earthquake.Geomorphology,71,293-309.
  8. Chang, K. J.,Taboada, A.,Chan, Y. C.,Dominguez, S.(2006).Post-seismic surface processes in the Jiufengershan landslide area, 1999 Chi-Chi earthquake epicentral zone, Taiwan.Engineering Geology,86,102-117.
  9. Chen, R. F.,Chan, Y. C.,Angelier, J.,Hu, J. C.,Huang, C.,Chang, K. J.,Shih, T. Y.(2005).Large earthquaketriggered landslides and mountain belt erosion: The Tsaoling case, Taiwan.Comptes Rendus Geoscience,337,1164-1172.
  10. Chisholm, R. A.,Cui, J.,Lum, S. K. Y.,Chen, B. M.(2013).UAV LiDAR for below-canopy forest surveys.Journal of Unmanned Vehicle Systems,01(01),61-68.
  11. Gallay, M.,Eck, C.,Zgraggen, C.,Kaňuk, J.,Dvorný, E.(2016).High resolution airborne laser scanning and hyperspectral imaging with a small UAV platform.The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLI-B1
  12. Gottfried, M.,Hollaus, M.,Glira, P.,Wieser, M.,Riegl, U.,Pfennigbauer, M..,未出版
  13. Haugerud, R. A.,Harding, D. J.,Johnson, S. Y.,Harless, J. L.,Weaver, C.S.(2003).High-resolution LiDAR topography of the Puget Lowland, Washington-A bonanza for earth science.GSA Today,4-10.
  14. Hsieh, Y. C.,Chan, Y. C.,Hu, J. C.,Chen, Y. Z.,Chen, R. F.,Chen, M.M(2016).Direct Measurements of Bedrock Incision Rates on the Surface of a Large Dip-slope Landslide by Multi-Period Airborne Laser Scanning DEMs.Remote Sens.,8(11),1-22.
  15. Mandlburger, G.,Pfennigbauer, M.,Wieser, M.,Riegl, U.(2016).Evaluation of a novel UAV-borne topo-bathymetric laser profiler.The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLI-B1
  16. Pfennigbauer, M., Riegl, U., Rieger, P., and Amon, P., “UAS based laser scanning for forest inventory and precision farming,” http://rsgis4hq.geo.tuwien.ac.at/ fileadmin/editors/RSGIS4HQ/proceedings/RSGIS4HQ_Pfennigbauer.pdf.
  17. Riegl(2016).Riegl, VUX-1UAV Datasheet (2016)..
  18. Sankey, T.,Donager, J.,McVay, J.,Sankey, J. B.(2017).UAV lidar and hyperspectral fusion for forest monitoring in the southwestern USA.Remote Sensing of Environment,195,30-43.
  19. Shan, J.(Ed.),Toth, C. K.(Ed.)(2008).Topographic Laser Ranging and Scanning: Principles and Processing.CRC press.
  20. Wallace, L.,Lucieer, A.,Watson, C.,Turner, D.(2012).Development of a UAV-LiDAR System with Application to Forest Inventory.Remote Sensing,4(6),1519-1543.
  21. Wallace, L.,Lucieer, A.,Watson, C.,Turner, D.(2011).Error assessment and mitigation for hyper-temporal UAV-borne LiDAR surveys of forest inventory.Proceedings of Silvilaser 2011,Hobart, Australia:
  22. Wallace, L.,Lucieer, A.,Watson, D.(2014).Evaluating tree detection and segmentation routines on very high resolution UAV LiDAR data.IEEE Transactions on Geoscience and Remote Sensing,52(12),7619-7628.
  23. 內政部(2005)。內政部,「LiDAR 測製數值高程模型及數值地表模型標準作業程序草案」 (2005)。
  24. 何心瑜(2006)。新竹,國立交通大學土木工程學系。
  25. 杜亮呈(2016)。國立台北科技大學土木系。
  26. 張國楨(2014)。,中央地質調查所。
  27. 黃明江(2016)。國立台北科技大學土木系。
  28. 黃美甄(2014)。國立台北科技大學土木系。
  29. 黃美甄,張國楨(2014)。無人飛行載具數值地形模型精度評估及應用。土木水利,41(4),52-53。
  30. 黃鐘,詹瑜璋,胡植慶,李建成,史天元,陳于高(2004)。空載雷射掃描技術製出之數值高程模型之簡介。地質,23(1),43-54。
  31. 楊宗祐(2017)。國立台北科技大學土木系。
  32. 楊宗祐,杜亮呈,張國楨,譚智宏(2017)。光譜相機於無人載具影像之精度評估及應用。大地技師,15,50-61。
  33. 詹瑜璋(2005)。見樹又見地:雷射測距掃描(LIDAR)。科學發展月刊,390,24-29。
  34. 廖達峻(2016)。國立台北科技大學土木系。
  35. 蔡秉宏,林秋芬,黃美甄,張國楨(2015)。無人飛行載具數值地形模型精度評估及應用。土木水利,42(6),67-73。
被引用次数
  1. 謝有忠,黃美甄,陳勉銘,張國楨,江晉霆(2023)。應用無人機光達解密隱藏於密林中之古崩塌地。土木水利,50(5),4-10。