英文摘要
|
The LiDAR sensor mounted on a UAV becomes a new powerful tool for geomatic technology. This study we integrate autonomous unmanned helicopter Pulse Aerospace Vapor 55, carrying Riegl VUX-1 UAV LiDAR with Trimble Applanix AP20 for the surveying mission. Based on the drone and instrument capacity, adjusted by the terrain landform, the optimal drone mission planning and scanning parameters are thus assigned, thus capable to acquire dense point clouds by 159 points/m^2 in nadir direction for a single fly line. To access the dataset, several software packages are used, including: the Trimble Applanix POSPac Mobile Mapping Suite software, GNSS-Aided Inertial post-processing for georeferencing data collected from UAS LiDAR. The Riegl RiPROCESS designed for managing, processing, analyzing, and visualizing and data export for the data acquired based on Riegl Laser Scanners. And finally, access and evaluate the dataset by means of Riegl RiPROCESS software for managing, processing, especially for fly-line adjustment and classification the UAS LiDAR point clouds, so as to compare the UAS dataset with the airborne's. The study tries to evaluate the parameters for fully-automatic point cloud classification by Terrascan, which is used regularly in Taiwan. This paper analyzes the influence and efficiency of different parameters for point cloud classification, to separates the non-ground point from the ground point so as to construct the digital elevation model. Finally, the density of the ground point is higher than 100 points/m^2, thus the spatial resolution of digital elevation model (DEM) is about 10 by 10cm. Compared with the data point measured from site surveying by e-GNSS, RTK (real time kinematic GPS survey) and total station, ground control points and check points, the elevation errors is less than five centimeters; thus the high resolution and high precision digital terrain models (DTMs) are capable to construct. UAS LiDAR point cloud after instrument calibration and flight trajectory adjustment, the surveying data acquisition can achieved as centimetric precision. According to the results, the technology of UAS LiDAR is capable and suitable for high resolution geoinfomatic studies and data acquisition.
|
参考文献
|
-
廖達峻,張國楨,曾志民,黃敏郎(2017)。應用無人飛行載具於山崩及河道變遷之量測分析—以來社溪為例。土木水利,44(2),67-73。
連結:
-
Amon, P.,Riegl, U.,Rieger, P.,Pfennigbauer, M.(2015).UAV-based laser scanning to meet special challenges in lidar surveying.Geomatics Indaba Proceedings
-
Carter, B.,Shrestha, R. L.(2003).National center for airborne laser mapping proposed.EOS,84,281-285.
-
Chan, Y. C.,Chen, Y. G.,Shih, T. Y.,Huang, C.(2007).Characterizing the Hsincheng active fault in northern Taiwan using airborne LiDAR data: detailed geomorphic features and their structural implications.Journal of Asian Earth Sciences,31,303-316.
-
Chang, K. J.,Chan, Y. C.,Chen, R. F.,Hsieh, Y. C.(2010).Evaluation of tectonic activities using LiDAR topographic data: an example from the Nankan lineament, northern Taiwan.Terrestrial, Atmospheric and Oceanic Sciences,21,463-476.
-
Chang, K. J.,Chan, Y. C.,Chen, R. F.,Hsieh, Y. C.(2018).Geomorphological evolution of landslides near an active normal fault in northern Taiwan, as revealed by lidar and unmanned aircraft system data.Nat. Hazards Earth Syst. Sci.,18,709-727.
-
Chang, K. J.,Taboada, A.,Chan, Y. C.(2005).Geological and morphological study of the Jiufengershan landslide triggered by the Chi-Chi Taiwan earthquake.Geomorphology,71,293-309.
-
Chang, K. J.,Taboada, A.,Chan, Y. C.,Dominguez, S.(2006).Post-seismic surface processes in the Jiufengershan landslide area, 1999 Chi-Chi earthquake epicentral zone, Taiwan.Engineering Geology,86,102-117.
-
Chen, R. F.,Chan, Y. C.,Angelier, J.,Hu, J. C.,Huang, C.,Chang, K. J.,Shih, T. Y.(2005).Large earthquaketriggered landslides and mountain belt erosion: The Tsaoling case, Taiwan.Comptes Rendus Geoscience,337,1164-1172.
-
Chisholm, R. A.,Cui, J.,Lum, S. K. Y.,Chen, B. M.(2013).UAV LiDAR for below-canopy forest surveys.Journal of Unmanned Vehicle Systems,01(01),61-68.
-
Gallay, M.,Eck, C.,Zgraggen, C.,Kaňuk, J.,Dvorný, E.(2016).High resolution airborne laser scanning and hyperspectral imaging with a small UAV platform.The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLI-B1
-
Gottfried, M.,Hollaus, M.,Glira, P.,Wieser, M.,Riegl, U.,Pfennigbauer, M..,未出版
-
Haugerud, R. A.,Harding, D. J.,Johnson, S. Y.,Harless, J. L.,Weaver, C.S.(2003).High-resolution LiDAR topography of the Puget Lowland, Washington-A bonanza for earth science.GSA Today,4-10.
-
Hsieh, Y. C.,Chan, Y. C.,Hu, J. C.,Chen, Y. Z.,Chen, R. F.,Chen, M.M(2016).Direct Measurements of Bedrock Incision Rates on the Surface of a Large Dip-slope Landslide by Multi-Period Airborne Laser Scanning DEMs.Remote Sens.,8(11),1-22.
-
Mandlburger, G.,Pfennigbauer, M.,Wieser, M.,Riegl, U.(2016).Evaluation of a novel UAV-borne topo-bathymetric laser profiler.The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLI-B1
-
Pfennigbauer, M., Riegl, U., Rieger, P., and Amon, P., “UAS based laser scanning for forest inventory and precision farming,” http://rsgis4hq.geo.tuwien.ac.at/ fileadmin/editors/RSGIS4HQ/proceedings/RSGIS4HQ_Pfennigbauer.pdf.
-
Riegl(2016).Riegl, VUX-1UAV Datasheet (2016)..
-
Sankey, T.,Donager, J.,McVay, J.,Sankey, J. B.(2017).UAV lidar and hyperspectral fusion for forest monitoring in the southwestern USA.Remote Sensing of Environment,195,30-43.
-
Shan, J.(Ed.),Toth, C. K.(Ed.)(2008).Topographic Laser Ranging and Scanning: Principles and Processing.CRC press.
-
Wallace, L.,Lucieer, A.,Watson, C.,Turner, D.(2012).Development of a UAV-LiDAR System with Application to Forest Inventory.Remote Sensing,4(6),1519-1543.
-
Wallace, L.,Lucieer, A.,Watson, C.,Turner, D.(2011).Error assessment and mitigation for hyper-temporal UAV-borne LiDAR surveys of forest inventory.Proceedings of Silvilaser 2011,Hobart, Australia:
-
Wallace, L.,Lucieer, A.,Watson, D.(2014).Evaluating tree detection and segmentation routines on very high resolution UAV LiDAR data.IEEE Transactions on Geoscience and Remote Sensing,52(12),7619-7628.
-
內政部(2005)。內政部,「LiDAR 測製數值高程模型及數值地表模型標準作業程序草案」 (2005)。
-
何心瑜(2006)。新竹,國立交通大學土木工程學系。
-
杜亮呈(2016)。國立台北科技大學土木系。
-
張國楨(2014)。,中央地質調查所。
-
黃明江(2016)。國立台北科技大學土木系。
-
黃美甄(2014)。國立台北科技大學土木系。
-
黃美甄,張國楨(2014)。無人飛行載具數值地形模型精度評估及應用。土木水利,41(4),52-53。
-
黃鐘,詹瑜璋,胡植慶,李建成,史天元,陳于高(2004)。空載雷射掃描技術製出之數值高程模型之簡介。地質,23(1),43-54。
-
楊宗祐(2017)。國立台北科技大學土木系。
-
楊宗祐,杜亮呈,張國楨,譚智宏(2017)。光譜相機於無人載具影像之精度評估及應用。大地技師,15,50-61。
-
詹瑜璋(2005)。見樹又見地:雷射測距掃描(LIDAR)。科學發展月刊,390,24-29。
-
廖達峻(2016)。國立台北科技大學土木系。
-
蔡秉宏,林秋芬,黃美甄,張國楨(2015)。無人飛行載具數值地形模型精度評估及應用。土木水利,42(6),67-73。
|