题名

臺灣臨海環境受鹽害鋼筋混凝土耐久性之本土化研究

并列篇名

DOMESTIC STUDY ON THE DURABILITY OF REINFORCED CONCRETE TO SALT DAMAGE IN TAIWAN COASTAL ENVIRONMENT

DOI

10.6652/JoCICHE.201905_31(3).0001

作者

陳育聖(Yu-Sheng Chen);詹穎雯(Yin-Wen Chan);楊仲家(Chung-Chia Yang)

关键词

氯鹽 ; 氯離子 ; 耐久性 ; 擴散係數 ; air-borne chloride ; chloride ion ; durability ; diffusion coefficient

期刊名称

中國土木水利工程學刊

卷期/出版年月

31卷3期(2019 / 05 / 01)

页次

217 - 229

内容语文

繁體中文

中文摘要

本文主要在探討鹽害環境下鋼筋混凝土之耐久性質,針對臺灣沿海地區之氯鹽環境進行調查,並藉由現地濱海既有老舊結構物之取樣,探討混凝土材料及環境參數之關聯性,試驗內容包含大氣中氯鹽之調查、現地混凝土氯離子滲入行為及氯離子擴散係數等,進而建立混凝土表面氯離子濃度與大氣中氯鹽量之關係,同時利用混凝土氯離子擴散係數試驗成果,進而提出本土化鹽害耐久性分析模式,將可得到各種配比在不同氯鹽環境下所需要之保護層厚度。本研究依據實際環境調查資料所提出之建議值,可初步訂定出各縣市鹽害分區之範圍,並給予較合適之保護層設計值,有助於工程師於沿海環境下設計出抗鹽害且符合經濟效益之構造物。

英文摘要

This study is main on the durability of reinforcement concrete structures in salt damage environment. It had been discussed the relationship between concrete materials and environmental parameters through the investigation of air borne chloride in the coastal region of Taiwan and the sampling of existed old structures in same areas. The tests included the investigation of air borne chloride in the atmosphere, the infiltration behavior of chloride ion in on-site concrete, the chloride diffusion coefficient, etc. Based on the test results, the correlation between the chloride content on concrete surface and air borne chloride had been established. Further, the domestic durability analysis model of salt damage was proposed depending on the test result of chloride diffusion coefficient. Then the required cover thickness in various conditions of concrete mixing proportion and air borne chloride environment could be estimated. The suggestions from this research based on actual environmental survey data can be used to initially define the distribution of salt injury in each county, and to provide adequate design thickness of covering for RC. The procedures and recommendations of this research can also helpfully assist the engineers on designs of chloride-resistant and economic costal structures.

主题分类 工程學 > 土木與建築工程
工程學 > 水利工程
工程學 > 市政與環境工程
参考文献
  1. (2004).EUROPEAN STANDARD, “EN1992-1-1 Eurocode2: Design of concrete structures - Part 1-1: General rules and rules for buildings,” pp. 47-52 (2004)..
  2. (2014).Life-365TM Consortium III, “Manual for Life-365TM Service life prediction mode,” Version 2.2.1, pp. 9-26 (2014)..
  3. (2006).BRITISH STANDARD, “BS 8500-1:2006 Concrete - Complementary British Standard to BS EN 206-1 - Part 1: Method of specifying and guidance for the specifier,” pp. 25-42 (2006).
  4. (2008).GB/T 50476-2008 混凝土結構耐久性設計規範.北京:中國建築工業出版社.
  5. Ambler, H. R.,Bain, A. A. J.(2007).Corrosion of metals in the tropics.Journal Applied Chemistry,5(9),437-467.
  6. American Association of State Highway and Transportation Officials(2012).AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS.Washington DC:
  7. California Department of Transportation(2003).California Department of Transportation, “Bridge Design Specification,” California, pp. 8-37 - 8-39 (2003)..
  8. Corvo, F.,Betancourt, N.,Mendoza, A.(1995).The influence of airborne salinity on the atmospheric corrosion of steel.Corrosion Science,37(12),1889-1901.
  9. Edvardsen, C.,Engelund, S.,Mohr, L.(2000).General guidelines for durability design and redesign: DuraCrete - probabilistic performance based durability design of concrete structures.
  10. Kim, J.,McCarter, W. J.,Suryanto, B.,Nanukuttan, S.,Chrisp, T. M.(2016).Chloride ingress into marine exposed concrete: A comparison of empirical- and physicallybased models.Cement and Concrete Composites,72,133-145.
  11. Liu, P.,Yu, Z.,Lu, Z.,Chen, Y.,Liu, X.(2016).Predictive convection zone depth of chloride in concrete under chloride environment.Cement and Concrete Composites,72,257-267.
  12. Mangat, P. S.,Molloy, B. T.(1994).Prediction of long term chloride concentration in concrete.Materials and structures,27(6),338-346.
  13. Meira, G. R.,Andrade, C.,Padaratz, I. J.,Alonso, C.,Borba, J. C., Jr.(2007).Chloride penetration into concrete structures in the marine atmosphere zone–Relationship between deposition of chlorides on the wet candle and chlorides accumulated into concrete.Cement & Concrete Composites,29(9),667-676.
  14. Petcherdchoo, A.(2016).Pseudo-coating model for predicting chloride diffusion into surface-coated concrete in tidal zone: Time-dependent approach.Cement and Concrete Composites,74,88-99.
  15. Shakouri, M.,Trejo, D.(2017).A time-variant model of surface chloride build-up for improved service life predictions.Cement and Concrete Composites,84,99-110.
  16. Shin, C. B.,Kim, E. K.(2002).Modeling of chloride ion ingress in coastal concrete.Cement and Concrete Research,32(5),757-762.
  17. Sorensen, B.,Maahn, E.(1982).Penetration rate of chloride in marine concrete structures.Nordic Concrete Research,24.1-24.18.
  18. Thomas, M.D.A.,Matthews, J.D.(2004).Performance of pfa concrete in a marine environment – 10-year results.Cement & Concrete Composite,26(1),5-20.
  19. 日本公益社團法人土木學會(2012)。混凝土標準示方書(設計編)。東京:
  20. 日本建設省土木研究所構造橋樑部橋樑研究所(1993)。飛來鹽分量全國調查(Ⅳ)-飛來鹽分量的分佈特性與風的關係。土木研究所資料,3175,1-26。
  21. 秋山充良,伊東佑香,鈴木基行(2006)。鋼筋混凝土構造物於塩害環境下耐久可靠度設計之相關基礎研究。日本土木學會論文集 E,62(2),385-401。
  22. 劉秉京(2007).混凝土結構耐久性設計.北京:人民交通出版社.