题名

台灣混凝土彈性模數折減對鋼筋混凝土結構耐震與崩塌性能評估影響研究

并列篇名

STUDY OF INFLUENCES OF REDUCED ELASTIC MODULUS OF CONCRETE IN TAIWAN ON THE SEISMIC AND COLLAPSE EVALUATION OF RC STRUCTURES

DOI

10.6652/JoCICHE.201905_31(3).0003

作者

胡瑋秀(Wei-Hsiu Hu);廖文正(Wen-Cheng Liao)

关键词

彈性模數 ; 耐震評估 ; 崩塌評估 ; modulus of elasticity ; seismic evaluation ; collapse evaluation

期刊名称

中國土木水利工程學刊

卷期/出版年月

31卷3期(2019 / 05 / 01)

页次

239 - 251

内容语文

繁體中文

中文摘要

台灣混凝土實際彈性模數E_c根據過去的研究,應為現行規範(E_c=15000(f_c')^(0.5))的80%左右,即為(E_c=12000(f_c')^(0.5)),台灣混凝土結構設計規範未來將會據此修正,修正時除了跟規範相關的彈性模數條文須一併因應檢討外,本研究希望探討現在即存鋼筋混凝土結構物,當其彈性模數折減時,受地震力作用下的耐震與崩塌性能之影響。本研究參考FEMA P695報告,建立原型構架(E_c=15000(f_c')^(0.5))及E_c折減為80%後的實驗構架(E_c=12000(f_c')^(0.5)),進行非線性靜力側推與動力歷時分析和增量動力分析法,藉此比對原型構架與實驗構架的行為。由分析結果可初步推斷,彈性模數折減雖會稍微降低構架的結構耐震與崩塌性能,但構架依舊能夠符合現行耐震與崩塌性能規範的需求。

英文摘要

According to recent research, the actual elastic modulus E_c of concrete in Taiwan is 80% of E_c calculated by current design code. Current codes which relate to E_c would be modified in the future because of the reduction of E_c. The objective of this research is investigating the influences of reduced E_c on current RC structure designs. Furthermore, this research also evaluates the seismic and collapse capability of structure with reduced E_c under the seismic load. Based on FEMA P695 report, this research builds control frame models (E_c = 15000 (f_c')^(0.5)) and experimental frame models (E_c = 12000 (f_c')^(0.5)) to conduct nonlinear push-over analysis, time history analysis and incremental dynamic analysis. The results show that the nonlinear responses of structures with reduced E_c would indeed lower both seismic and collapse capability. Although the capability of Experimental Frames (0.8 E_c) slightly decrease according to nonlinear analysis, all of them still meet the requirements of current code in Taiwan.

主题分类 工程學 > 土木與建築工程
工程學 > 水利工程
工程學 > 市政與環境工程
参考文献
  1. ASCE(2016).ASCE, “Minimum Design Loads for Buildings and Other Structures (ASCE/SEI 7-16),” American Society of Civil Engineers (2016)..
  2. Baker, J. W.(2005).Stanford, California,Department of Civil and Environmental Engineering, Stanford University.
  3. Clough, R.W.,Penzien, J.(1993).Dynamics of Structures.New York:Mc-Graw Hill Inc..
  4. FEMA(2009).,Washington D.C:Federal Emergency Management Agency.
  5. FEMA(2000).,Washington D.C:Federal Emergency Management Agency.
  6. Haselton, CB.,Deierlein, GG.(2007).John A. Blume Earthquake Engineering Center Technical ReportJohn A. Blume Earthquake Engineering Center Technical Report,Stanford Digital Repository.
  7. Ibarra, L. F.,Medina, R. A.,Krawinkler, H.(2005).Hysteretic models that incorporate strength and stiffness deterioration.Earthquake Engineering and Structural Dynamics,34,1489-1511.
  8. International Code Council(2006).International Building Code.
  9. Massimo, L.(2011).Theoretical and Experimental Analysis of Dissipative Beam-to-Column Joints in Moment Resisting Steel Frames.Universal-Publishers.
  10. Miranda, E.,Bertero, V. V.(1994).Evaluation of strength reduction factors for earthquake-resistant design.Earthquake Spectra,10(2),357-379.
  11. PEER(2006).PEER, Pacific Earthquake Engineering Research Center : PEER NGA Database, University of California, Berkeley (2006)..
  12. 國家地震工程研究中心(2013)。,台北:。
  13. 黃兆龍(2007).混凝土性質與行為.台北:詹氏書局.
  14. 廖文正,林致淳,詹穎雯(2016)。台灣混凝土彈性模數建議公式研究。結構工程期刊,31(3),5-31。
  15. 劉庭愷(2017)。台北,台灣大學土木工程研究所。
被引用次数
  1. 張國鎮,Marco Bonopera(2021)。ELASTIC MODULUS OF PRESTRESSED AND REINFORCED CONCRETE BEAMS IN TAIWAN UNDER DYNAMIC FLEXURAL LOADING。中國土木水利工程學刊,33(2),83-92。