题名

SEQUENTIAL UPDATE OF HIGHWAY TRAVEL-TIME FORECASTING USING A GREY MODEL

并列篇名

以灰方法建構具持續更新能力之高速公路旅行時間預測

DOI

10.6652/JoCICHE.201906_31(4).0003

作者

李穎(Ying Lee);魏健宏(Chien-Hung Wei);徐賢斌(Hsien-Pin Hsu);曾慶瑄(Ching-Hsuan Tzeng);蘇郁涵(Yu-Han Su);吳佩芸(Pei-Yun Wu)

关键词

grey model ; speed forecast ; travel-time forecasting ; time-series ; tunnel area ; 灰模型 ; 速率預測 ; 旅行時間預測 ; 時間序列 ; 隧道區

期刊名称

中國土木水利工程學刊

卷期/出版年月

31卷4期(2019 / 06 / 01)

页次

315 - 326

内容语文

英文

中文摘要

Traffic conditions often change substantially over a short time. To decrease the uncertainty caused by the changing traffic conditions, this study applied speed data as the model input and demonstrated a univariant approach for travel-time forecasting models with sequentially updated traffic data by combining grey and regression methods. The rolling grey model (RGM(1,1)), incorporating prediction grey model (IPGM(1,1)), and incorporating partial prediction grey model (IPPGM(1,1)) were applied to forecast the speed by using historical speed data. Based on the forecasted speed from the grey models, the regression method was used to develop a functional relationship between the actual historical travel time from vehicle detectors and actual historical bus travel times. Consequently, the forecasted bus travel time was obtained by applying the forecasted travel-time from the grey models as the independent variable in the regression relationship. To reflect the actual traffic situations adequately, the data collection period included weekdays and weekends. For most links and paths, the mean absolute percentage errors (MAPEs) of forecasted bus travel times were lower than 9.6%, indicating a high-quality performance. For most links, the forecasted travel times computed from speeds forecasted by IPGM(1,1) and IPPGM(1,1) were more accurate than those forecasted by RGM(1,1). Empirical studies have shown that the proposed procedure effectively combines traffic data from many detectors to form travel-time information for travelers and traffic managers. The forecasted travel time can be calculated by inserting real-time traffic data into the function as required.

英文摘要

為降低因交通變化對用路人造成的不確定感,本研究整合應用含預測訊息之灰預測與迴歸方法,從單變量時間序列角度開發具持續更新能力之旅行時間預測模式。本研究首先應用與開發滾動灰方法、含預測訊息之滾動灰方法與含部分預測訊息之滾動灰方法進行速率預測與旅行時間預測。研究分別使用平日與假日資料進行模式建構。路段與路徑旅行時間預測的研究結果具有高度準確率,其平均絕對誤差百分比皆低於9.6%。實證結果顯示,本研究所提出的資料處理程序與研究步驟可有效整合路段上各點交通資料,持續更新提供高準確的旅行時間預測訊息。

主题分类 工程學 > 土木與建築工程
工程學 > 水利工程
工程學 > 市政與環境工程
参考文献
  1. Akay, D.(2007).Grey prediction with rolling mechanism for electricity demand forecasting of turkey.Energy,32(5),1670-1675.
  2. Barimani, N.,Kian, A. R.,Moshiri, B.(2014).Real time adaptive non-linear estimator/predictor design for traffic systems with inadequate detectors.IET Intelligent Transport Systems,8(3),308-321.
  3. Chang, H. B.,Zhang, Y. S.,Chen, L. E.(2003).Gray forecast of diesel engine performance based on wear.Applied Thermal Engineering,23(17),2285-2292.
  4. Chen, C. I.,Huang, S. J.(2013).The necessary and sufficient condition for GM(1,1) grey prediction model.Applied Mathematics and Computation,219(11),6152-6162.
  5. Chen, C. K.,Tien, T. L.(1997).A new forecasting method of discrete dynamic system.Applied Mathematics and Computation,86(1),61-84.
  6. Chen, H.,Rakha, H. A.(2014).Real-time travel time prediction using particle filtering with a non-explicit state-transition model.Transportation Research Part C,43(1),112-126.
  7. Chen, Y.,Yang, B.,Meng, Q.,Zhao, Y.,Abraham, A.(2011).Time-series forecasting using a system of ordinary differential equations.Information Sciences,181(1),106-114.
  8. Chien, I. J.,Ding, Y.,Wei, C. H.(2002).Dynamic bus arrival time prediction with artificial neural networks.Journal of Transportation Engineering,128(5),429-438.
  9. Deng J. L.(1989).Introduction to Grey Systems.The Journal of Grey System,1(1),1-24.
  10. Deng, J. L.(1982).Control problems of Grey Systems.Systems and Control Letters,1(5),288-294.
  11. Dion, F.,Rakha, H.(2006).Estimating dynamic roadway travel times using automatic vehicle identification data for low sampling rates.Transportation Research Part B,40(9),745-766.
  12. Ehmke, J. F.,Meisel, S.,Mattfeld, D. C.(2012).Floating car based travel times for city logistics.Transportation Research Part C,21(1),338-352.
  13. Faouzi, N. E. E.,Billot, R.,Bouzebda, S.(2010).Motorway travel time prediction based on toll data and weather effect integration.IET Intelligent Transport Systems,4(4),338-345.
  14. Fei, X.,Lu, C. C.,Liu, K. A.(2011).Bayesian dynamic linear model approach for real-time short-term freeway travel time prediction.Transportation Research Part C,19(6),1306-1318.
  15. Guo, H.,Xiao, X.,Forrest, J.(2013).A research on a comprehensive adaptive grey prediction model CAGM(1, N).Applied Mathematics and Computation,225(1),216-227.
  16. Hinsbergen, C. P. I. J.,Hegyi, A.,Lint, J. W. C.,Zuylen, H. J.(2011).Bayesian neural networks for the prediction of stochastic travel times in urban networks.IET Intelligent Transport Systems,5(4),259-265.
  17. Hong, W. C.,Dong, Y.,Zheng, F.,Lai, C. Y.(2011).Forecasting urban traffic flow by SVR with continuous ACO.Applied Mathematical Modelling,35(3),1282-1291.
  18. Innamaa, S.(2005).Short-term prediction of travel time using neural networks on an interurban highway.Transportation,32(6),649-669.
  19. Jiang, X. S.,Zhang, L.,Chen, X. Q.(2014).Short-term forecasting of high-speed rail demand: A hybrid approach combining ensemble empirical mode decomposition and gray support vector machine with real-world applications in China.Transportation Research Part C,44,110-127.
  20. Khosravi, A.,Mazloumi, E.,Nahavandi, S.,Creighton, D.,Lint, J. W. C. V.(2011).A genetic algorithm-based method for improving quality of travel time prediction intervals.Transportation Research Part C,19(6),1364-1376.
  21. Kumar, U.(2010).Time series models (Grey-Markov, Grey Model with rolling mechanism and singular spectrum analysis) to forecast energy consumption in India.Energy,35(4),1709-1716.
  22. Lewis, C. D.(1982).Industrial and Business Forecasting Method.London:Butterworth Scientific.
  23. Lim, S.,Lee, C.(2011).Data fusion algorithm improves travel time predictions.IET Intelligent Transport Systems,5(4),302-309.
  24. Lu, M.,Wevers, K.(2007).Forecasting and evaluation of traffic safety impacts: Driving assistance systems against road infrastructure measures.IET Intelligent Transport Systems,1(2),117-123.
  25. Ma, Y.,Chowdhury, M.,Sadek, A.,Jeihani, M.(2012).Integrated traffic and communication performance evaluation of an intelligent vehicle infrastructure integration (VII) system for online travel-time prediction.IEEE Transactions on Intelligent Transportation Systems,13(3),1369-1382.
  26. Mu, T.,Jiang, J.,Wang, Y.(2012).Heterogeneous delay embedding for travel time and energy cost prediction via regression analysis.IEEE Transactions on Intelligent Transportation Systems,14(1),214-224.
  27. Oh, C.,Park, S.(2011).Investigating the effects of daily travel time patterns on short-term prediction.Journal of Civil Engineering,15(7),1263-1272.
  28. Pai, T. Y.,Lo, H. M.,Wan, T. J.,Chen, L.,Hung, P. S.,Lo, H. H.,Lai, W. J.,Lee, H. Y.(2015).Predicting air pollutant emissions from a medical incinerator using grey model and neural network.Applied Mathematical Modeling,39(5-6),1513-1525.
  29. Palacharla, P. V.,Nelson, P. C.(1999).Application of fuzzy logic and neural networks for dynamic travel time estimation.International Transactions in Operational Research,6(1),145-160.
  30. Park, D.,Rilett, L.(1998).Forecasting multiple-period freeway link travel times using modular neural networks.Transportation Research Record,1617,163-170.
  31. Paterson, D.,Rose, G.(2008).A recursive, cell processing model for predicting freeway travel times.Transportation Research Part C,16(4),432-453.
  32. Rice, J.,Zwet, E. V.(2004).A simple and effective method for predicting travel time on freeway.IEEE Transaction on Intelligent Transportation Systems,5(3),200-207.
  33. Samvedi, A.,Jain, V.(2013).A grey approach for forecasting in a supply chain during in termittent disruptions.Engineering Applications of Artificial Intelligence,26(3),1044-1051.
  34. Vlahogianni, E. I.,Karlaftis, M. G.,Golias, J. C.(2014).Short-term traffic forecasting: Where we are and where we’re going.Transportation research part C,43(1),3-19.
  35. Wang, C. H.,Hsu, L. C.(2008).Using genetic algorithms grey theory to forecast high technology industrial output.Applied Mathematics and Computation,195(1),256-263.
  36. Wang, X. Q.,Qi, L.,Chen, C.,Tang, J. F.,Jiang, M.(2014).Grey system theory based prediction for topic trend on internet.Engineering Applications of Artificial Intelligence,29,191-200.
  37. Wei, C. H.,Lee, Y.(2007).Development of freeway travel time forecasting models by integrating different sources of traffic data.IEEE Transactions on Vehicular Technology,56(6),3682-3694.
  38. Yin, M. S.,Tan, H. W. V.(2013).On the fit and forecasting performance of grey prediction models for China’s labor formation.Mathematical and Computer Modelling,57(3-4),357-365.
  39. Zhang, X.,Rice, J. A.(2003).Short-term travel time prediction.Transportation Research Part C,11C(3-4),187-210.
  40. Zhao, Z.,Wang, J. Z.,Zhao, J.,Su, Z. Y.(2012).Using a Grey model optimized by differential evolution algorithm to forecast the per capita annual net income of rural households in China.Omega,40(5),525-532.
  41. Zheng, P.,McDonald, M.(2009).Estimation of travel time using fuzzy clustering method.IET Intelligent Transport Systems,3(1),77-86.
  42. Zheng, Y.,Zheng, X. L.,Gao, Z. W.,Zhang, Y. X.(2013).Prediction of seawater quality in rigs-to-reefs area based on grey systems theory.Procedia Environmental Sciences,18,236-242.
  43. Zou, Y.,Zhu, X.,Zhang, Y.,Zen, X.(2014).A space–time diurnal method for short-term freeway travel time prediction.Transportation Research Part C,43(1),33-49.