题名

多視立體視覺三維重建技術於工程監測與變遷偵測應用

并列篇名

ENGINEERING MONITORING AND CHANGE DETECTION FOR MULTI-VIEW STEREO 3D RECONSTRUCTION TECHNOLOGY

DOI

10.6652/JoCICHE.201906_31(4).0005

作者

張庭榮(Ting-Rong Chang);李良輝(Liang-Hwei Lee)

关键词

多視立體視覺 ; 工程監測 ; 近景攝影 ; 三維重建 ; 點雲 ; 變遷偵測 ; multi-view stereo ; engineering monitoring ; close-range photogrammetry ; 3D reconstruction ; point cloud ; 3D change detection

期刊名称

中國土木水利工程學刊

卷期/出版年月

31卷4期(2019 / 06 / 01)

页次

337 - 350

内容语文

繁體中文

中文摘要

多視立體視覺三維重建技術之發展,補足了傳統近景攝影測量技術之不足。如全自動的影像匹配技術,使相機自率定及外方位參數(四元數)推求得以更加快速方便;多視立體視覺立體匹配技術,可獲取大量三維點雲資料等。利用全自動之影像匹配技術,配合稠密點雲資訊將可有效描述三維重建本體,進而應用於整體及變遷偵測使用。本研究提出以多視立體視覺三維重建技術為主,提供簡單、廉價及精度高之工程監測解決方案,並以邊坡自動監測、港區結構體監測及三維變遷偵測為例,進行相關測試及驗證,以證明該方法用於工程監測之可行性。

英文摘要

The development of Structure from Motion multi-view stereo 3D reconstruction technology complements the shortcomings of traditional close-range Photogrammetry. Such as automatic image matching technology, the camera self-calibration and external orientation parameters (Quaternion) to inquire more quickly and easily; Multi-viewer stereo matching technology, access to a large number of 3D point cloud data. Using the fully automatic image matching technology, with the dense point cloud will be able to effectively describe the 3D reconstructed structure, and then applied to the overall and the use of change detection. This study proposes to multi-view stereo 3D reconstruction technology-based, to provide a simple, low-cost and high-precision monitoring of engineering solutions, and slope automatic monitoring, port monitoring of the structure and 3D change detection as an example, relevant test, and verification to prove the feasibility of this method for the monitoring project.

主题分类 工程學 > 土木與建築工程
工程學 > 水利工程
工程學 > 市政與環境工程
参考文献
  1. Abdel-Aziz, Y. I.,Karara, H. M.(1971).Direct Linear Transformation from Comparator Coordinates into Object Space Coordinates in Close-Range Photogrammetry.Proceedings of the Symposium on Close-Range Photogrammetry,Falls Church, VA:
  2. Bergevin, R.,Soucy, M.,Gagnon, H.,Laurendeau, D.(1996).Toward a general multi-view registration technique.IEEE Transactions on Pattern Analysis and Machine Intelligence,18(5)
  3. Bundler: Structure from Motion (SfM) for Unordered Image Collections, http://www.cs.cornell.edu/~snavely/bundler/
  4. Chen, Y.,Medioni, G.(1992).Object Modeling by Registration of Multiple Range Images.Image and Vision Computing,10(3),145-155.
  5. Furukawa, Y.,Ponce, J.(2010).Accurate, Dense and robust multiview stereopsis.IEEE Transactions on Pattern Analysis and Machine Intelligence,32,1362-1376.
  6. Furukawa, Yasutaka,Curless, Brian,Seitz, Steven M.,Szeliski, Richard(2010).Towards internet-scale multi-view stereo.CVPR
  7. Furukawa, Yasutaka,Ponce, Jean(2007).Accurate, dense, and robust multi-view stereopsis.IEEE Conference on Computer Vision and Pattern Recognition
  8. Furukawa, Yasutaka,Ponce, Jean(2008).Accurate camera calibration from multi-view stereo and bundle adjustment.IEEE Conference on Computer Vision and Pattern Recognition
  9. Girardeau-Montaut, D.,Roux, M.,Marc, R.,Thibault, G.(2005).Change detection on points cloud data acquired with a ground laser scanner.International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences,36(Part 3),30-35.
  10. Hartley, R. I.(1997).Kruppa’s equations derived from the fundamental matrix.IEEE Transactions on Pattern Analysis and Machine Intelligence,19(2),133-135.
  11. Hartley, R.,Zisserman, A.(2004).Multiple View Geometry in Computer Vision.Cambridge University Press.
  12. Jancosek, M.,Pajdla, T.(2011).Multi-view reconstruction preserving weakly-supported surfaces.CVPR 2011 - IEEE Conference on Computer Vision and Pattern Recognition
  13. Kazhdan, M.,Bolitho, M.,Hoppe, H.(2006).Poisson Surface Reconstruction.Eurographics Symposium on Geometry Processing
  14. Lowe, D. G.(2004).Distinctive image features from scaleinvariant keypoints.International Journal of Computer Vision (IJCV),60,91-110.
  15. Maybank, S. J.,Faugeras, O. D.(1992).A theory of self-calibration of a moving camera.International Journal of Computer,8(2),123-151.
  16. Park, Soon-Yong,Subbarao, Murali(2003).An accurate and fast point-to-plane registration.Technique Pattern Recognition Letters,24,2967-2976.
  17. Paul, Besl,Neil, McKay(1992).A method for registration of 3-D shapes.IEEE Transactions on Pattern Analysis and Machine Intelligence,14(2),239-256.
  18. Rusinkiewicz, S.,Levoy, M.(2001).Efficient variants of the ICP algorithm.IEEE International Conference on 3D Digital Imaging and Modeling
  19. Snavely, N.,Seitz, S. M.,Szeliski, R.(2008).Modeling the world from internet photo collections.International Journal of Computer Vision,80(2),189-210.
  20. Triggs, B.,Hartley, R.,Hartley, R.,Fitzgibbon(2000).Bundle Adjustment — A Modern Synthesis.Vision Algorithms: Theory and Practice