题名

類神經網路輔助影像室內定位

并列篇名

INDOOR POSITIONING BASED-ON IMAGES AIDED BY ARTIFICIAL NEURAL NETWORKS

DOI

10.6652/JoCICHE.201910_31(6).0001

作者

洪渼芹(Mei-Chin Hung);廖振凱(Jhen-Kai Liao);李育華(Yu-Hua Li);江凱偉(Kai-Wei Chiang);王靚琇(Jing-Shiou Wang);黃鉅富(Jiu-Fu Huang);吳俊毅(Jiun-Yi Wu)

关键词

類神經網路 ; 多層前饋式神經網路 ; 階層關聯式神經網路 ; ANN ; MFNN ; CCN

期刊名称

中國土木水利工程學刊

卷期/出版年月

31卷6期(2019 / 10 / 01)

页次

529 - 533

内容语文

繁體中文

中文摘要

利用智慧型手機進行室內導航日趨流行,而行人航位推算法可透過感測器解決室內接收不到GNSS的狀況,其隨時間累積的誤差亦可透過穩定更新圖資改善。本研究導航系統利用具絕對坐標的圖資,影像辨識後再以類神經網路推算標誌與手機間距離。以多層前饋式神經網路架構輔助進行影像定位,成果顯示精度雖優於僅使用傳統影像定位技術,仍會出現學習新資訊忘記既有資訊的問題。本研究提出基於階層關聯式神經網路,同時採用過去訓練之關鍵數據,能有效改善上述遺忘過去訓練成果的問題,距離精度可提升至0.5公尺,可望未來實質運用於手機行人定位。

英文摘要

With the springing up of smartphones, indoor navigation becomes more and more popular. One of the algorithms in the domain of indoor navigation is Pedestrian Dead Reckoning (PDR), which has the good potential to confront the challenge of the blocked satellite signal. Moreover, the error of inertial sensors accumulating with time can be solved by updating geospatial information steadily. This study adopts a method based on the built-in sensors combining with the camera. In order to reduce the image processing, the study further adopts the marker self-designed to aid in carrying out indoor positioning. Then, the Artificial Neural Network (ANN) is applied to estimate the distance between the marker and the camera. Because the marker is also georeferenced, the position of camera is calculated through the detected georeferenced marker, estimated distance. Afterward, the result of PDR can be updated. In this study, the result shows that the accuracy using Multi-Layer Feed-Forward Neural Networks (MFNNs) is higher than traditional techniques. However, the architecture still can't overcome the catastrophic forgetting in the neural network. For this predicament, this study proposes using Cascade Correlation Networks (CCNs) and adding the key data to improve accuracy. As a result, based on the same training data, trying to add some key data makes the accuracy can achieves 0.5 meters.

主题分类 工程學 > 土木與建築工程
工程學 > 水利工程
工程學 > 市政與環境工程
参考文献
  1. Anderson, D.,McNeill, G.(1992).Artificial neural networks technology.Kaman Sciences Corporation,258(6),1-83.
  2. Chang, H. W.(2009).Tainan, Taiwan,Dept. of Geomatics, National Cheng Kung University.
  3. Kim, G.,Petriu, E. M.(2010).Fiducial marker indoor localization with artificial neural network.Advanced Intelligent Mechatronics (AIM), 2010 IEEE/ASME International Conference on
  4. Sahoo, P. K.,Soltani, S. A. K. C.,Wong, A. K.(1988).A survey of thresholding techniques.Computer Vision, Graphics, and Image Processing,41(2),233-260.
  5. Werner, M.,Kessel, M.,Marouane, C.(2011).Indoor positioning using smartphone camera.Indoor Positioning and Indoor Navigation (IPIN), 2011 International Conference on
  6. Zhang, J. Y.,Chen, Y.,Huang, X. X.(2009).Edge detection of images based on improved Sobel operator and genetic algorithms.Image Analysis and Signal Processing, 2009. IASP 2009. International Conference on