题名

無人飛行載具於大規模崩塌潛勢區之輔助調查-以高雄市六龜區D015大規模崩塌潛勢區為例

并列篇名

THE APPLICATION OF UNMANNED AERIAL VEHICLE ON LARGE-SCALE LANDSLIDE INVESTIGATION - THE D015 SITE IN LIUGUI, KAOHSIUNG AS A DEMONSTRATION

DOI

10.6652/JoCICHE.201911_31(7).0006

作者

李國維(Kuo-Wei Li);黎俊逸(Chun-I Li);潘以文(Yii-Wen Pan);廖志中(Jyh-Jong Liao)

关键词

無人飛行載具 ; 大規模崩塌潛勢區 ; 地質調查 ; 航空攝影測量 ; UAV ; photogrammetry ; site investigation ; potential large-scale landslide

期刊名称

中國土木水利工程學刊

卷期/出版年月

31卷7期(2019 / 11 / 01)

页次

659 - 670

内容语文

繁體中文

中文摘要

欲了解大規模崩塌潛勢區可能的破壞行為與機制,可透過航照判釋、地表地質調查、地質鑽探等方法,調查崩積層厚度、岩土界面位置、岩層不連續面位態等項目,掌握潛勢區地質模式。未來發生大規模崩塌的活動性,可由暴雨或地震事件後的地貌特徵改變量,如蝕溝上溯長度、崩崖後退量、崩塌裸露面積變化進行評估。然而大規模崩塌潛勢區的數量眾多且範圍廣大,面積可達上百公頃、高差可達近千米,崩崖與蝕溝深度可達數十米,傳統人力調查方式難以有效率的調查潛勢區地形及地質資訊。無人飛行載具機動快速、成本低、可低空飛行、可即時獲得高解析度影像的特性,相當適合應用於調查潛勢區的地形、地質及災前災後的地貌變化。本研究以高雄市-六龜區-D015大規模崩塌潛勢區為例,以無人飛行載具拍攝序列照片並產製三維點雲模型、數值地表模型與正射影像,估計潛勢區內崩積層厚度、露頭層面位態,並比較暴雨事件前後的地貌特徵變化、計算崩塌量體。研究結果顯示無人飛行載具空拍能協助建立大規模崩塌潛勢區的初步地質模式,並能提供災前、災後地形/地貌特徵變化之量化分析所需的資料。

英文摘要

To assess the potential of a large-scale landslide, it is essential to obtain geological information for the landslide site through site investigation which may include aerial interpretation, field geology survey, geophysics tests and borehole exploration. However, the implementation of geological surveys usually consumes a lot of time and manpower. The access of large-scale landslide site is often exposed to rugged terrain; it is usually challenging and dangerous to collect geological information in some inaccessible spots such as cliffs and deep valleys. Lately, light-weight unmanned aerial vehicles (UAV) equipped with cameras or image sensors have been widely used because of its high mobility and low cost. In this study, we demonstrate a variety of possible UAV applications for the geological survey in a potential large-scale landslide area. The present work adopted commercial UAV as a site-investigation tool and utilizes UAV-photogrammetry methods to improve the efficiency of geological survey in a large-scale landslide area in southern Taiwan. The produced UAV photogrammetry includes aerial photos, three-dimensional point cloud, digital surface models, and ortho-images. In this paper, we demonstrate four possible applications of geological survey to collect various types of data. These applications include (1) the thickness estimation of colluvium; (2) the orientation determination of outcrop bedding planes; (3) the micro geomorphological features interpretation; and (4) the depth, area and volume estimation of the rainfall event.

主题分类 工程學 > 土木與建築工程
工程學 > 水利工程
工程學 > 市政與環境工程
参考文献
  1. Bemis, S. P.(2014).Ground-based and UAV-based photogrammetry: A multi-scale, high-resolution mapping tool for structural geology and paleoseismology.Journal of Structural Geology,69,163-178.
  2. Cawood, A.J.(2017).LiDAR, UAV or compass-clinometer? Accuracy, coverage and the effects on structural models.Journal of Structural Geology,98,67-82.
  3. Dalamagkidis, K.,Valavanis, K. P.,Piegl, L. A.(2011).On integrating unmanned aircraft systems into the national airspace system: issues, challenges, operational restrictions, certification, and recommendations.Springer Science & Business Media.
  4. Eisenbeiss, H.(2009).ETH Zurich.
  5. Gómez-Gutiérrez, Á.(2014).Using 3D photo-reconstruction methods to estimate gully headcut erosion.Catena,120,91-101.
  6. Lague, D.,Brodu, N.,Leroux, J.(2013).Accurate 3D comparison of complex topography with terrestrial laser scanner: Application to the Rangitikei canyon (NZ).ISPRS Journal of Photogrammetry and Remote Sensing,82,10-26.
  7. Lowe, D. G.(2004).Distinctive image features from scale-invariant keypoints.International Journal of Computer Vision,60(2),91-110.
  8. Mantovani, F.,Soeters, R.,Van Westen, C.(1996).Remote sensing techniques for landslide studies and hazard zonation in Europe.Geomorphology,15(3-4),213-225.
  9. Niethammer, U.(2011).Open source image-processing tools for low-cost UAV-based landslide investigations.International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences,38(1),C22.
  10. Seitz, S. M.(2006).A comparison and evaluation of multi-view stereo reconstruction algorithms.2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)
  11. Snavely, N.,Seitz, S. M.,Szeliski, R.(2008).Skeletal graphs for efficient structure from motion.CVPR
  12. Turner, D.,Lucieer, A.,Wallace, L.(2014).Direct georeferencing of ultrahigh-resolution UAV imagery.IEEE Transactions on Geoscience and Remote Sensing,52(5),2738-2745.
  13. Turner, D.,Lucieer, A.,Watson, C.(2012).An automated technique for generating georectified mosaics from ultra-high resolution unmanned aerial vehicle (UAV) imagery, based on structure from motion (SfM) point clouds.Remote Sensing,4(5),1392-1410.
  14. Walstra, J.(2006).Loughborough University.
  15. 何維信(1995).航空攝影測量學.台北:大中國圖書公司.
  16. 林務局(2017)。,未出版
  17. 第二河川局(2015).頭前溪中正大橋岩床河段河道變遷趨勢與穩定策略.
  18. 黃美甄(2014)。臺北科技大學土木與防災研究所。
  19. 廖達峻(2016)。台北市,國立臺北科技大學土木工程系土木與防災碩士班。
  20. 黎俊逸(2017)。新竹市,國立交通大學土木工程系土木與防災碩士班。