题名

半圓頂型屋蓋結構風壓頻譜之類神經網路模擬

并列篇名

ANN MODELING OF WIND PRESSURE SPECTRA ON HEMISPHERICAL DOME ROOFS

DOI

10.6652/JoCICHE.201912_31(8).0007

作者

王人牧(Jenmu Wang);劉博溢(Bo-Yi Liu);羅元隆(Yuan-Lung Lo)

关键词

輻狀基底函數類神經網路 ; 結構風工程 ; 風壓頻譜 ; 大跨徑結構 ; RBFNN ; structural wind engineering ; wind pressure spectrum ; large span structure

期刊名称

中國土木水利工程學刊

卷期/出版年月

31卷8期(2019 / 12 / 01)

页次

739 - 746

内容语文

繁體中文

中文摘要

結構物的耐風設計通常需要經由風洞實驗,取得風壓頻譜的實驗數據,其過程相當耗時且費用昂貴。使用回歸公式來整理分析實驗數據,常無法得到準確的風壓頻譜值,因此,如何更有效的利用風洞實驗氣動力資料庫是一個重要的課題。本研究利用半圓頂型結構風壓資料庫,著重於半圓頂模型其曲率與結構高度的變化,對於子午線上風壓頻譜的影響,利用隨機選取法撰寫幅狀基底函數類神經網路(RBFNN)程式,在訓練、驗證與測試網路的過程中,尋找符合理論且準確的估算模型,最後得到的ANN預測模型與前人之回歸公式做進一步的比較探討,更突顯了其準確性與適用性的優勢。

英文摘要

Wind resistant design of buildings often needs to acquire wind spectra from wind tunnel tests. Using regression formulas to process and analyze experimental data of wind spectra usually is not very accurate. Therefore, one of the most important issue is how to use experimental wind load aerodynamic database more effectively. A wind pressure database for hemispherical dome roofs was collected. The emphases of the research were on the study of wind pressure spectra on the meridian with the change of curvature and height as well as the establishment of an Artificial Neural Network (ANN) prediction model. Random center selection method was used to write Radial Basis Function Neural Network (RBFNN) programs to train, validate and test the ANNs. The estimation models found not only accurate but also theoretically consistent. ANN Models were also compared with previous regression formula showing better accuracy and applicability.

主题分类 工程學 > 土木與建築工程
工程學 > 水利工程
工程學 > 市政與環境工程
参考文献
  1. Chen, Y.,Kopp, G.A.,Surry, D.(2003).Prediction of pressure coefficients on roofs of low buildings using artificial neural networks.Journal of Wind Engineering and Industrial Aerodynamics,91(3)
  2. Cheng, C.M.,Fu, C.L.(2010).Characteristics of wind loads on a hemispherical dome in smooth flow and turbulent boundary layer flow.Journal of Wind Engineering Industrial Aerodynamics,98(6-7),328-344.
  3. English, E.C.,Fricke, F.R.(1999).The interference index and its prediction using a neural network analysis of wind-tunnel data.Journal of Wind Engineering and Industrial Aerodynamics,83(1-3),567-575.
  4. Khanduri, A.C.,Bédard, C.,Stathopoulos, T.(1997).Modeling wind-induced interference effects using backpropagation neural networks.Journal of Wind Eng. and Industrial Aerodynamics,72,71-79.
  5. Letchford, C.W.,Sarkar, P.P.(2000).Mean and fluctuating wind loads on rough and smooth parabolic domes.Journal of Wind Engineering Industrial Aerodynamics,88(1),101-117.
  6. Li, Q.S.,Tamura, Y.,Yoshida, A.,Katsumura, A.,Cho, K.(2006).Wind loading and its effects on single-layer reticulated cylindrical shells.Journal of Wind Engineering Industrial Aerodynamics,94(12),949-973.
  7. Lo, Y.L.(2016).Approximation of fluctuating pressure spectra of dome-like roofs under turbulent flow.Journal of the Chinese Institute of Civil Engineering and Hydraulic Engineering,28,11-19.
  8. Maher, F.J.(1965).Wind loads on basic dome shapes.Journal of Structural Division, ASCE,ST3,219-228.
  9. Ogawa, T.,Nakayama, M.,Murayama, S.,Sasaki, Y.(1991).Characteristics of wind pressures on basic structures with curved surfaces and their response in turbulent flow.Journal of Wind Engineering Industrial Aerodynamics,38(2-3),427-438.
  10. Qiu, Y.,Sun, Y.,Wu, Y.,Tamura, Y.(2014).Effects of splitter plates and reynolds number on the aerodynamic loads acting on a circular cylinder.Journal of Wind Engineering Industrial Aerodynamics,127,40-50.
  11. Taylor, T.J.(1991).Wind pressures on a hemispherical dome.Journal of Wind Engineering Industrial Aerodynamics,40(2),199-213.
  12. Uematsu, Y.,Moteki, T.,Hongo, T.(2008).Model of wind pressure field on circular flat roofs and its application to load estimation.Journal of Wind Engineering Industrial Aerodynamics,96(6-7),1003-1014.
  13. Uematsu, Y.,Tsuruishi, R.(2008).Wind load evaluation system for the design of roof cladding of spherical domes.Journal of Wind Engineering Industrial Aerodynamics,96(10-11),2054-2066.
  14. Wang, J.,Cheng, C.M.(2010).The application of artificial neural networks to predict wind spectra for rectangular cross-section buildings.Proceedings of Fifth International Symposium on Computational Wind Engineering: CWE2010,Chapel Hill, North Carolina, USA:
  15. Wang, J.,Cheng, C.M.(2017).Formulation of estimation models for wind force coefficients of rectangular shaped buildings.Journal of Applied Science and Engineering,20(1),55-62.
  16. Zhang, A.,Zhang, L.(2004).RBF neural networks for the prediction of building interference effects.Computers & Structures,82(27),2333-2339.
  17. 張斐章,張麗秋(2011).類神經網路.台中:滄海書局.
  18. 鍾欣潔(2010)。新北市,淡江大學土木工程學系。