题名

FINITE DIFFERENCE METHOD TO THE SEQUENTIAL COMPOUND CALL OPTION VALUATION PROBLEM FOR MULTISTAGE INFRASTRUCTURE INVESTMENTS

并列篇名

以有限差分法求解多期公共建設投資方案的序列複合選擇權評價

DOI

10.6652/JoCICHE.202003_32(1).0004

作者

黃玉霖(Yu-Lin Huang);林岑縉(Tsen-Chin Lin)

关键词

finite difference method ; sequential compound call option ; multistage infrastructure ; 有限差分法 ; 序列複合選擇權 ; 多期公共建設投資

期刊名称

中國土木水利工程學刊

卷期/出版年月

32卷1期(2020 / 03 / 01)

页次

35 - 47

内容语文

英文

中文摘要

Solving the problem of sequential compound call option valuation is crucial to making decisions related to investment in multistage infrastructure projects. However, the analytical method solution to the sequential compound call option valuation problem is complex and inefficient. Three finite difference methods are proposed for obtaining faster solutions to the sequential compound call option valuation problem. The explicit, implicit and Crank-Nicolson methods are provided, and a real-world numerical case study is presented to illustrate the applicability and performance of the methods. The proposed methods can produce desirable valuation outcomes in terms of speed and accuracy under certain conditions. In particular, the Crank-Nicolson method is optimal for conducting valuations when only yearly asset data are available. When weekly or daily data are available and asset volatility is lower, the explicit method tends to perform more favorably. When the observed asset volatility is higher, the implicit method and the Crank-Nicolson method tend to be more accurate. Moreover, the implicit method and the Crank-Nicolson method are unconditionally stable, and therefore, at the cost of increased computation time, an appropriate maximum asset value can be set and a small grid design can be used to improve the accuracy.

英文摘要

解決序列複合選擇權評價問題對於多期公共建設投資案之可行性來說是非常重要的。然而,現存之封閉解對於此類專案來說過於複雜且無效率。有鑑於此,本研究利用工程領域常用之有限差分法來建立更有效率且簡單之序列複合選擇權模型。本研究經由真實案例驗證了顯式法、隱式法以及Crank-Nicolson法可解決此類序列複合選擇權評價問題,並在特定情況下提供了更佳的準確度與計算速度。當以年為單位觀察時,Crank-Nicolson法在準確度上表現較好,在以週或日為單位觀察時,且資產波動度較低時,顯式法提供更好的結果。然而,當資產波動度較高時,隱式法和Crank-Nicolson法之結果較為準確。

主题分类 工程學 > 土木與建築工程
工程學 > 水利工程
工程學 > 市政與環境工程
参考文献
  1. Agliardi, E.,Agliardi, R.(2005).A closed-form solution for multicompound options.Risk Letters,1,1-2.
  2. Almassi, A.,McCabe, B.,Thompson, M.(2013).Real options–based approach for valuation of government guarantees in public–private partnerships.Journal of Infrastructure Systems,19(2),196-204.
  3. Berk, J. B.,Green, R. C.,Naik, V.(2004).Valuation and return dynamics of new ventures.The Review of Financial Studies,17(1),1-35.
  4. Black, F.,Scholes, M.(1973).The pricing of options and corporate liabilities.Journal of Political Economics,81,637-654.
  5. Boyle, P. P.(1988).A lattice framework for option pricing with two state variables.Journal of Financial and Quantitative Analysis,23(1),1-12.
  6. Boyle, P. P.(1977).Options: A monte carlo approach.Journal of Financial Economics,4(3),323-338.
  7. Boyle, P. P.,Lau, S. H.(1994).Bumping up against the barrier with the binomial method.The Journal of Derivatives,1(4),6-14.
  8. Boyle, P. P.,Tian, Y.(1998).An explicit finite difference approach to the pricing of barrier options.Applied Mathematical Finance,5(1),17-43.
  9. Brandão, L. E.,Dyer, J. S.,Hahn, W. J.(2005).Using binomial decision trees to solve real-option valuation problems.Decision Analysis,2(2),69-88.
  10. Brennan, M. J.,Schwartz, E. S.(1978).Finite difference methods and jump processes arising in the pricing of contingent claims: A synthesis.The Journal of Financial and Quantitative Analysis,13(3),461-474.
  11. Cassimon, D.(2004).The valuation of a NDA using a 6-fold compound option.Research Policy,33(1),41-51.
  12. Chiara, N.,Garvin, J.(2007).Valuing simple multi-exercise real options in infrastructure projects.Journal of Infrastructure System,13,97-104.
  13. Cooney, M.(1999).Dublin, Ireland,Trinity College.
  14. Copeland, T. E.,Antikarov, V.(2001).Real Options: A Practitioner’S Guide.Texere.
  15. Cortazar, G.,Schwartz, E. S.(1993).A compound option model of production and intermediate inventories.The Journal of Business,66,517-540.
  16. Cox, J. C.,Ross, S. A.,Rubinstein, M.(1979).Option pricing: A simplified approach.Journal of Financial Economics,7(3),229-263.
  17. Damnjanovic, I.,Duthie, J.,Waller, S. T.(2008).Valuation of strategic network flexibility in development of toll road projects.Construction Management and Economics,26(9),979-990.
  18. Dixit, A. K.,Pindyck, R. S.(1994).Investment Under Uncertainty.Princeton University Press.
  19. Duffy, D. J.(1980).Uniformly Convergent Difference Schemes for Problems with a Small Parameter in the Leading Derivative.Trinity College.
  20. Duffy, D. J.(2006).Finite Difference Methods in Financial Engineering: A Partial Differential Equation Approach.Wiley.
  21. Fadugba, S.,Nwozo, C.,Babalola, T.(2012).The comparative study of finite difference method and monte carlo method for pricing european option.Mathematical Theory and Modeling,2,60-66.
  22. Gamba, A.(2003).Real options valuation: A monte carlo approach.SSRN Electronic Journal
  23. Geske, R.(1979).The valuation of compound options.Journal of Financial Economics,7(1),63-81.
  24. Geske, R.(1977).The valuation of corporate liabilities as compound options.The Journal of Financial and Quantitative Analysis,12(4),541-552.
  25. Glasserman, P.,Zhao, X.(1999).Fast Greeks by simulation in forward LIBOR models.Journal of Computational Finance,3(1),5-39.
  26. Hauschild, B.,Reimsbach, D.(2015).Modeling sequential R&D investments: a binomial compound option approach.Business Research,8(1),39-59.
  27. Herath, H. S. B.,Park, C. S.(2002).Multi-stage capital investment opportunities as compound real options.The Engineering Economist,47(1),1-27.
  28. Huang, J.,Cen, Z.,Le, A.(2013).A finite difference scheme for pricing american put options under kou’s jump-diffusion model.Journal of Function Spaces and Applications,2013,11.
  29. Huang, Y. L.,Chou, S. P.(2006).Valuation of the minimum revenue guarantee and the option to abandon in BOT infrastructure projects.Construction Management and Economics,24(4),379-389.
  30. Huang, Y. L.,Pi, C. C.(2009).Valuation of multi‐ stage BOT projects involving dedicated asset investments: A sequential compound option approach.Construction Management and Economics,27(7),653-666.
  31. Huang, Y.,Pi, C.(2011).Competition, dedicated assets, and technological obsolescence in multistage infrastructure investments: A sequential compound option valuation.IEEE Transactions on Engineering Management,58(1),141-153.
  32. Hull, J.(2009).Options, Futures and Other Derivatives.Pearson/Prentice Hall.
  33. Hull, J.,White, A.(1990).Valuing derivative securities using the explicit finite difference method.The Journal of Financial and Quantitative Analysis,25(1),87-100.
  34. Kou, S. G.(2002).A jump-diffusion model for option pricing.Management Science,48(8),1086-1101.
  35. Kudryavtsev, O.(2013).Finite difference methods for option pricing under levy processes: Wiener-hopf factorization approach.The Scientific World Journal,2013,12.
  36. Lajeri-Chaherli, F.(2002).A note on the valuation of compound options.Journal of Futures Markets,22,1103-1115.
  37. Lee, M.-Y.,Yeh, F.-B.,Chen, A.-P.(2008).The generalized sequential compound options pricing and sensitivity analysis.Mathematical Social Sciences,55(1),38-54.
  38. McCracken, D. D.,Dorn, W. S.(1964).Numerical Methods and Fortran Programming: With Applications in Engineering and Science.Wiley.
  39. Merton, R. C.(1973).Theory of rational option pricing.Bell Journal of Economics,4(1),141-183.
  40. Mogi, G.,Chen, F.(2007).Valuing a multi-product mining project by compound rainbow option analysis.International Journal of Mining, Reclamation and Environment,21(1),50-64.
  41. Pendharkar, P. C.(2010).Valuing interdependent multi-stage IT investments: A real options approach.European Journal of Operational Research,201(3),847-859.
  42. Rubinstein, M.(2000).On the relation between binomial and trinomial option pricing models.The Journal of Derivatives,8(2),47-50.
  43. Schwartz, E. S.(1977).The valuation of warrants: Implementing a new approach.Journal of Financial Economics,4(1),79-93.
  44. Thomassen, L.,van Wouwe, M.(2001).The n-Fold Compound Option.
  45. Toivanen, J.(2010).A high-order front-tracking finite difference method for pricing american options under jump-diffusion models.The Journal of Computational Finance,13,61-79.
  46. Trigeorgis, L.(1991).A log-transformed binomial numerical analysis method for valuing complex multi-option investments.Journal of Financial and Quantitative Analysis,26(3),309-326.
  47. Wade, B. A.(2007).On smoothing of the Crank-Nicolson scheme and higher order schemes for pricing barrier options.Journal of Computational and Applied Mathematics,204(1),144-158.
  48. Wilmott, P.(2013).Paul Wilmott on Quantitative Finance.Wiley.
  49. Yip, S.(Ed.)(2005).Handbook of Materials Modeling: Methods.Dordrecht:Springer Netherlands.