题名

以深度學習與建築資訊模型及虛擬實境技術探討室內聲音定位

并列篇名

SOUND-BASED INDOOR POSITIONING FOR RESCUE USING DEEP LEARNING, BUILDING INFORMATION MODELS AND VIRTUAL REALITY

DOI

10.6652/JoCICHE.202009_32(5).0002

作者

張智雄(Chih-Hsiung Chang);談家成(Jia-Cheng Tan);王如觀(Ru-Guan Wang);吳佰餘(Pai-Yu Wu);周建成(Chien-Cheng Chou)

关键词

深度學習 ; 建築資訊模型 ; 虛擬實境 ; 室內定位 ; deep learning ; building information modeling ; virtual reality ; indoor positioning system

期刊名称

中國土木水利工程學刊

卷期/出版年月

32卷5期(2020 / 09 / 01)

页次

383 - 392

内容语文

繁體中文

中文摘要

在救災時於建築物室內可快速定位為相當重要的需求。隨著軟體技術演進,應用建築資訊模型與虛擬實境技術已能模擬真實世界建築物之3D視覺場景與聲響效果,例如人物在虛擬世界漫遊可感受到聲音吸收、散射、傳輸與距離等特徵。因此,本研究旨在將某建築空間建構虛擬複本,前處理虛擬空間各點聲音資料,以深度學習法進行聽音辨位,將來能以實際空間任一點聲音值,透過演算法預測室內位置。最後總結研究成果在室內定位應用與未來方向。

英文摘要

Indoor positioning is one of the most important tasks during disaster relief. As software technology evolves rapidly, various applications based on building information modeling and virtual reality have been utilized to simulate the three-dimensional scenes and sound effects of real-world buildings. For example, characters roaming in the virtual world can perceive sound absorption, scattering, transmission, and distance features. The purpose of this study is to construct the virtual replica of a building space, analyze the sound reception data of each designated point, and use the deep learning algorithm to identify the corresponding indoor position. In addition, although modern deep learning algorithms can produce satisfactory predictions, they may take longer time to reach convergence, which is not feasible during disaster relief. Thus, adjustment of algorithm parameters to balance the trade-off between model accuracy and training time is discussed, followed by model limitations and future directions.

主题分类 工程學 > 土木與建築工程
工程學 > 水利工程
工程學 > 市政與環境工程
参考文献
  1. 鄭安平,王如觀,吳佰餘,謝春棋,戴荏國,談家成,周建成(2019)。以深度學習分析智慧電表資料的加值應用-以用電不安全預警為例。中國土木水利工程學刊,31(2),193-204。
    連結:
  2. Wikipedia, “Convolutional neural network in deep learning,” (2020) https://en.wikipedia.org/wiki/ Convolutional_neural_network
  3. Abdel-Hamid, O.,Mohamed, A.,Jiang, H.,Deng, L.,Penn, G.,Yu, D.(2014).Convolutional neural networks for speech recognition.IEEE/ACM Transactions on Audio, Speech, and Language Processing,22(10),1533-1545.
  4. Altini, M.,Brunelli, D.,Farella, E.,Benini, L.(2010).Bluetooth in door localization with multiple neural networks.IEEE 5th International Symposium on Wireless Pervasive Computing,Mondena, Italy:
  5. Azhar, S.(2011).Building Information Modeling (BIM): Trends, benefits, risks, and challenges for the AEC Industry.Leadership and Management in Engineering,11(3),241-252.
  6. Begault, D. R.(2000).3-D sound for virtual reality and multimedia.California, U.S.A.:NASA Ames Research Center, Moffett Field.
  7. Biswas, J.,Veloso, M.(2010).WiFi localization and navigation for autonomous indoor mobile robots.IEEE International Conference on Robotics and Automation,Anchorage, Alaska, USA:
  8. Chen, G.,Parada, C.,Heigold, G.(2014).Small-footprint keyword spotting using deep neural networks.International Conference Acoustics, Speech and Signal Processing,Florence, Italy:
  9. Dunston, P. S.,Arns, L. L.,Mcglothlin, J. D.(2007).An immersive virtual reality mock-up for design review of hospital patient rooms.International Conference on Construction Applications of Virtual Reality,State College, Pennsylvania, U.S.A.:
  10. El Saddik, A.(2018).Digital Twins: The convergence of multimedia technologies.IEEE MultiMedia,25(2),87-92.
  11. Filonenko, V.,Cullen, C.,Carswell, J.(2010).Investigatingultrasonic positioning on mobile phones.International Conference on Indoor Positioning and Indoor Navigation,Zurich, Switzerland:
  12. Ibrahim, R.,Rahimian, F. P.(2010).Comparison of CAD and manual sketching tools for teaching architectural design.Automation in Construction,19(8),978-987.
  13. Jin, T.(1997).Studies on human behavior and tenability in fire smoke.Fire Safety Science,5,3-21.
  14. Krishnan, S.,Sharma, P.,Zhang, G.,Ong, H. W.(2007).A UWB based localization system for indoor robot navigation.IEEE International Conference on Ultra Wideband,Singapore:
  15. Mainetti, L.,Patrono, L.,Sergi, I.(2014).A survey on indoor positioning systems.International Conference on Software, Telecommunications and Computer Networks,Split, Croatia:
  16. Ni, L. M.,Zhang, D.,Souryal, M. R.(2011).RFID-based localization and tracking technologies.IEEE Wireless Communications,18(2),45-51.
  17. Paes, D.,Arantes, E.,Irizarry, J.(2017).Immersive environment for improving the understanding of architectural 3D models: Comparing user spatial perception between immersive and traditional virtual reality systems.Automation in Construction,84,292-303.
  18. Pei, L.,Chen, L.,Guinness, R.,Liu, J.,Kuusniemi, H.,Chen, Y.,Chen, R.,Söderholm, S.(2013).Sound positioning using a small-scale linear microphone array.International Conference on Indoor Positioning and Indoor Navigation,Montbeliard-Belfort, France:
  19. Ramos, G.,Cobos, M.,Bank, B.,Belloch, J. A.(2017).A parallel approach to HRTF approximation and interpolation based on a parametric filter model.IEEE Signal Processing Letters,24(10),1507-1511.
  20. Sacks, R.,Eastman, C.,Lee, G.,Teicholz, P.(2018).BIM Handbook: A Guide to Building Information Modeling for Owners, Designers, Engineers, Contractors, and Facility Managers.Hoboken, New Jersey, U.S.A.:Wiley.
  21. Sainath, T. N.,Parada, C.(2015).INTERSPEECHINTERSPEECH,Dresden, Germany:.
  22. Savioja, L.,Svensson, U.(2015).Overview of geometrical room acoustic modeling techniques.The Journal of the Acoustical Society of America,138(2),708-730.
  23. Silver, D.,Huang, A.,Maddison, C.,Guez, A.,Sifre, L.,van den Driessche, G.,Schrittwieser, J.,Antonoglou, I.,Panneershelvam, V.,Lanctot, M.,Dieleman, S.,Grewe, D.,Nham, J.,Kalchbrenner, N.,Sutskever, I.,Lillicrap, T.,Leach, M.,Kavukcuoglu, J.,Graepel, T.,Hassabis, D.(2016).Mastering the game of Go with deep neural networks and tree search.Nature,529,484-489.
  24. Slant, “Unity3D vs Unreal Engine 4 detailed comparison as of 2020 – Slant,” (2020). https://www.slant.co/versus/ 1047/5128/~unity3d_vs_unreal-engine-4
  25. Tóth, L.(2014).Combining time- and frequency-domain convolution in convolutional neural network-based phone recognition.International Conference on Acoustics, Speech and Signal Processing,Florence, Italy:
  26. Vorländer, M.,Schröder, D.,Pelzer, S.,Wefers, F.(2015).Virtual reality for architectural acoustics.Journal of Building Performance Simulation,8(1),15-25.
  27. Yu, D.,Deng, L.(2015).Automatic speech recognition – A deep learning approach.London, U.K.:Springer.
  28. Zotkin, D. N.,Duraiswami, R.,Davis, L. S.(2004).Rendering localized spatial audio in a virtual auditory space.IEEE Transactions on Multimedia,6(4),553-564.
  29. Zulkifli, R.,Nor, J. M.,Ismail, A. R.,Nuawi, Z.,Tahir, M. F. M.(2009).Effect of perforated size and air gap thickness on acoustic properties of coir fibre sound absorption panels.European Journal of Scientific Research,28(2),242-252.
  30. 王威仁(2005)。臺南,國立成功大學建築研究所。
  31. 許俊逸,徐景文,林傑,李文欽(2014)。BIM 帶來的變革與政府的前瞻作為。工程,87(5),2-9。
  32. 陳弘毅,邱晨瑋(2019).火災學.台北:鼎茂.