题名

臺北盆地沖積土層剪力波速量測方法不確定性之研究

并列篇名

STATISTICAL CHARACTERIZATION OF SHEAR WAVE VELOCITY BETWEEN DIFFERENT MEASUREMENT METHODS IN ALLUVIUM OF TAIPEI BASIN

DOI

10.6652/JoCICHE.202011_32(7).0006

作者

王俊翔(Jiun-Shiang Wang);黃俊鴻(Jin-Hung Hwang);盧志杰(Chih-Chieh Lu);鄧源昌(Yuan-Chang Deng)

关键词

土壤剪力波速 ; 現地波速量測方法 ; 模型不確定性 ; 臺北盆地沖積層 ; shear wave velocity ; seismic testings ; model uncertainty ; alluvium of Taipei basin

期刊名称

中國土木水利工程學刊

卷期/出版年月

32卷7期(2020 / 11 / 01)

页次

633 - 644

内容语文

繁體中文

中文摘要

本文旨在探討各現地土壤剪力波速量測的變異性,並利用統計方法率定各項方法間的模型不確定性。工程設計上,土壤剪力波速的應用十分廣泛,因此常屬工址調查中必要之項目。然因不擾動土壤樣本不易取得且品質難以掌握,因此現地土壤剪力波速量測法仍為較可靠之方法。在實務上,土壤剪力波速實測方法很多,亦有各方法之比較,然各方法量測結果間之變異卻鮮少被討論,其量化研究更是稀少,使工程設計者在評估現地量測結果時鮮有依據。因此,本研究首先蒐集、整理臺北盆地內,13處同時進行各種現地剪力波速量測之場址實測結果,並利用所得資料探討各方法間量測結果之變異性。本文最後提出一套各方法間變異性的統計模式,期能供工程界參考應用。

英文摘要

This paper aims to investigate the variability of soil shear wave velocity (V_s) by different measurement methods, and characterize the uncertainty with statistical models. In engineering design, the application of V_s is widely developed, so it has become necessary in site investigation. However, due to the difficulty of taking undisturbed samples and quality control, field V_s measurement methods are believed as more reliable ways than laboratory tests, and there are many kinds of developed techniques in practice. Although the field methods are various, the variability between them is rarely discussed, and the discussion of the quantitative relation between them is even rarer. It would result in the lack of basis for engineering design. Therefore, this paper takes the Taipei Basin as an example, and simultaneously deploys 5 kinds of measurement methods on 13 adaptable sites respectively, and exploits the data to investigate the uncertainty of results by those methods. Finally, the corresponding statistical models for the aforementioned uncertainty are shown, as a reference for geotechnical engineering design.

主题分类 工程學 > 土木與建築工程
工程學 > 水利工程
工程學 > 市政與環境工程
参考文献
  1. (2018).Geotechnical Earthquake Engineering and Soil Dynamics V.ASCE.
  2. (2010).GeoFlorida 2010: Advances in Analysis, Modeling & Design.ASCE.
  3. Andrus, R. D.,Stokoe, K. H.(2000).Liquefaction resistance of soils from shear-wave velocity.Journal of Geotechnical and Geoenvironmental Engineering, ASCE,126(11),1015-1025.
  4. Andrus, R. D.,Stokoe, K. H.,Juang, C. H.(2004).Guide for shear-wave-based liquefaction potential evaluation.Earthquake Spectra,20(2),285-308.
  5. Building Seismic Safety Council=BSSC(2003).NEHRP recommended provisions and commentary for seismic regulations for new buildings and other structures.Washington, D.C:Federal Emergency Management Agency.
  6. Campanella, R. G.,Robertson, P. K.,Gillespie, D.,Laing, N.,Kurfurst, P. J.(1987).Seismic cone penetration in the near offshore of the MacKenzie delta.Canadian Geotechnical Journal,24,154-159.
  7. Campanella, R. G.,Stewart, W. P.(1991).Downhole seismic cone analysis using digital signal processing.Proceedings of Second International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics,St Louis, Missourl, No:
  8. Chang, W. J.(2016).Evaluation of liquefaction resistance for gravelly sands using gravel content–corrected shear-wave velocity.Journal of Geotechnical and Geoenvironmental Engineering, ASCE,142(5)
  9. Ching, J.,Lin, G. H.,Chen, J. R.,Phoon, K. K.(2016).Transformation models for effective friction angle and relative density calibrated based on generic database of coarse-grained soils.Canadian Geotechnical Journal,54(4),481-501.
  10. Ching, J.,Phoon, K. K.(2014).Correlations among some clay parameters — the multivariate distribution.Canadian Geotechnical Journal,51(6),686-704.
  11. Ching, J.,Wu, S. S.,Phoon, K. K.(2016).Statistical characterization of random field parameters using frequentist and Bayesian approaches.Canadian Geotechnical Journal,53(2),285-298.
  12. Conover, W. J.(1999).Practical Nonparametric Statistics.New York:John Wiley & Sons, Inc..
  13. DeGroot, D. J.,Baecher, G. B.(1993).Estimating autocovariance of in‐situ soil properties.Journal of Geotechnical Engineering,199(1)
  14. Evans, J. D.(1996).Straightforward Statistics for the Behavioral Sciences.Pacific Grove, CA:Brooks/Cole Publishing.
  15. Garofalo, F.,Foti, S.,Hollender, F.,Bard, P. Y.,Cornou, C.,Cox, B. R.,Dechamp, A.,Ohrnberger, M.,Perron, V.,Sicilia, D.,Teague, D.,Vergniault, C.(2016).InterPACIFIC project: Comparison of invasive and non-invasive methods for seismic site characterization. PartII: Inter-comparison between surface-wave and borehole methods.Soil Dynamics and Earthquake Engineering,82,241-254.
  16. Ghafghazi, M.,Shuttle, D. A.(2010).Interpretation of the in situ density from seismic CPT in Fraser River sand.2nd International Symposium on Cone Penetration Testing,Huntington Beach, CA, U.S.A.:
  17. Giacheti, H. G.,Mio, G. D.,Peixoto, A. S. P.(2006).Cross- hole and seismic CPT tests in a tropical soil site.Atlanta, Georgia, U. S.:GeoCongress.
  18. Holzer, T. L.,Noce, T. E.,Bennett, M. J.(2010).,Reston, Virginia:U.S. Department of the Interior.
  19. Hunter, H. A.,Benjumea, B.,Harris, J. B.,Miller, R. D.,Pullan, S. E.,Burns, R. A.,Good, R. L.(2002).Surface and downhole shear wave seismic methods for thick soil site investigations.Soil Dynamics and Earthquake Engineering,22,931-941.
  20. Juang, C. H.,Jian, T.,Andrus, R. D.(2002).Assessing probability-based methods for liquefaction potential evaluation.Journal of Geotechnical and Geoenvironmental Engineering, ASCE,128(7),580-589.
  21. Kayen, R. E.,Mitchell, J. K.,Seed, R. B.,Lodge, A.,Nishio, S.,Coutinho, R. M.(1992).Evaluation of SPT-, CPT-, and Shear Wave- based methods for liquefaction potential assessment using Loma Prieta Data.Proceedings of 4th U.S.-Japan Workshop on Earthquake Resistant Design of Lifeline Facilities and Countermeasures Against Soil Liquefaction,Honolulu, HI NCEER:
  22. Kayen, R.,Moss, R. E. S.,Thompson, E. M.,Seed, R. B.(2013).Shear-wave velocity–based probabilistic and deterministic assessment of seismic soil liquefaction potential.Journal of Geotechnical and Geoenvironmental Engineering, ASCE,139(3),407-419.
  23. Kim, D. S.,Kim, J. T.,Bang, E. S.,Park, H. J.,Park, H. C.(2006).Comparative study of field seismic tests at a multi-layered model testing site.GeoShanghai International Conference 2006,Shanghai, China:
  24. Kim, S.,Kim, D.(1997).SASW method for the evaluation of ground densification by dynamic compaction.Proceedings of the 3rd International Conference on Ground Improvement Geosystems: Densification and Reinforcement,London:
  25. Kulhawy, F. H.,Mayne, P. W.(1990).Manual on estimating soil properties for foundation design.Parlo Alto:Electric Power Research Institute, Cornell University.
  26. Liao, T.,Mayne, P. W.,Tuttle, M. P.,Schweig, E. S.,Arsdale, R. B. V.(2002).CPT site characterization for seismic hazards in the New Madrid seismic zone.Soil Dynamics and Earthquake Engineering,22,943-950.
  27. Lin, C. P.,Chang, T. S.(2004).Multi-station analysis of surface wave dispersion.Soil Dynamics and Earthquake Engineering,24,877-886.
  28. Lin, C. P.,Lin, C. H.,Chien, C. J.(2017).Application of surface wave method in assessment of ground modification with improvement columns.Journal of Applied Geophysics,142,14-22.
  29. McGann, C. R.,Bradley, B. A.,Cubrinovski, M.,Taylor, M. L.,Wotherspoon, L. M.(2014).Comparison of existing CPT-Vs correlations with canterbury-specific seismic CPT data.New Zealand Society for Earthquake Engineering Conference
  30. Phoon, K. K.,Kulhawy, F. H.(1999).Characterization of geotechnical variability.Canadian Geotechnical Journal,36(4),612-624.
  31. Robertson, P. K.,Campanella, R. G.,Gillespie, D.,Rice, A.(1986).Seismic CPT to measure in situ shear wave velocity.Journal of Geotechnical Engineering,112,791-803.
  32. Robertson, P. K.,Woeller, D. J.,Finn, W. D. L.(1992).Seismic cone penetration test for evaluating liquefaction potential under cyclic loading.Canadian Geotechnical Journal,29(4),686-695.
  33. Slifker, J. F.,Shapiro, S. S.(1980).The Johnson system: Selection and parameter estimation.Technometrics,22(2),239-246.
  34. Stokoe, K. H.,Joh, S.,Woods, R. D.(2004).Some contributions of in situ geophysical measurements to solving geotechnical engineering problems.Proceedings of 2nd International Conference on Site Characterization,Porto, Portugal:
  35. Stokoe, K. H.,Wright, S. G.,Bay, J. A.,Roësset, J. M(2012).Characterization of geotechnical sites by SASW method.ISSMFE Technical Committee 10 for XIII ICSMFE,Netherlands:
  36. Wadhwa, R. S.,Ghosh, N.,Rao, C. S.(2010).Empirical relation for estimating shear wave velocity from compressional wave velocity of rocks.Journal of Indian Geophysics Union,14(1),21-30.
  37. Wair, B. R.,DeJong, J. T.,Shantz, T.(2012).PEER ReportPEER Report,Pacific Earthquake Engineering Research Center Headquarters at the University of California.
  38. 內政部營建署,建築物基礎構造設計規範,內政部營建署,第 2-4 至 2-5 頁,中華民國 (2011)。
  39. 陳逸龍(2004)。新竹,國立交通大學土木工程學系。
被引用次数
  1. 盧志杰,鄧源昌,黃俊鴻,王俊翔(2023)。土壤剪力波速經驗式與其不確定性之率定-基隆河與淡水河岸沖積場址案例研究。中國土木水利工程學刊,35(2),119-130。
  2. 盧志杰,鄧源昌,黃俊鴻,王俊翔(2023)。土壤液化簡易評估法的模式不確定性研究。中國土木水利工程學刊,35(7),645-654。