题名

應用高韌性纖維混凝土(ECC)邁向永續基礎設施工程

并列篇名

TOWARD SUSTAINABLE AND RESILIENT INFRASTRUCTURE ENGINEERING USING ECC

DOI

10.6652/JoCICHE.202012_32(8).0005

作者

袁宇秉(Terry YP Yuen);洪崇展(Chung-Chan Hung);Victor C Li

关键词

韌性纖維混凝土 ; 彎曲混凝土 ; 微觀力學設計 ; 永續與恢復能力 ; ECC ; bendable concrete ; micromechanics ; sustainability ; resiliency

期刊名称

中國土木水利工程學刊

卷期/出版年月

32卷8期(2020 / 12 / 01)

页次

713 - 720

内容语文

繁體中文

中文摘要

高韌性纖維混凝土(Engineered Cementitious Composites,簡稱ECC)的極限受拉應變可達2%至8%,數百倍於一般混凝土。ECC受力開裂時,裂縫的散佈均勻,在達到極限應變以前,其寬度不會持續擴大,而維持小於100 μm的穩定值。當ECC用於結構系統,其優異的受拉性能與高破壞容損性可克服一般混凝土的缺點,因而:一、抑制混凝土與鋼筋界面剝離;二、增加塑性鉸長度;三、減少剪力筋的使用量;四、避免大寬度裂縫的形成。本論文先嚴謹且完整回顧ECC的微觀力學基礎、材料定制方法和施工;之後說明ECC的耐震能力和耐久性,並介紹真實建築與基礎建設成功應用ECC的案例;最後討論典型ECC的限制,並介紹數種新型多功能ECC。

英文摘要

Engineered Cementitious Composites (ECC), commonly known as bendable concrete, is micromechanically designed for a tailored tensile strain-hardening behavior with strain capacity typically beyond 2% to as much as 8% which is a few hundred times greater than that of normal concrete and is comparable with the yield strain of reinforcing bars. Contrary to the localized cracking in normal concrete, ECC demonstrates well diffused cracking in tension with a stabilized crack width of less than 100 μm, which is on the same order of the diameter of a human hair, until the tensile strain capacity is reached. When used in structures, the superior tensile deformation capacity and damage tolerance of ECC can overcome the typical weaknesses of normal concrete by (i) suppressing interfacial debonding with reinforcement and the spalling of concrete cover, (ii) extending the plastic hinge length and enhancing the ductility, (iii) reducing the required amount of shear reinforcement, and (iv) preventing the formation of cracks with large width which are detrimental to the durability and structural resiliency. This paper critically reviews the micromechanics design basis of ECC (Section 2), the material tailoring methods, casting, and quality control (Section 3), seismic performances and durability (Section 4), and the successful applications of ECC in building and infrastructure projects (Section 5). Lastly, Section 6 discusses the current limitations of regular ECC and introduces the latest developments of several multi-functional and novel ECCs.

主题分类 工程學 > 土木與建築工程
工程學 > 水利工程
工程學 > 市政與環境工程
参考文献
  1. Fischer, G.,Li, V. C.(2003).Deformation behavior of fiber-reinforced polymer reinforced engineered cementitious composite (ECC) flexural members under reversed cyclic loading conditions.ACI Structural Journal,100(1),25-35.
  2. Fukuyama, H.(2000).Structural performance of engineered cementitious composite elements: Composite and hybrid structures.The 6th ASCCS International Conference on Steel-Concrete Composite Structures,Los Angeles, CA:
  3. Hung, C. C.,Hung, H. H.(2020).Potential of sodium sulfate solution for promoting the crack-healing performance for strain-hardening cementitious composites.Cement and Concrete Composites,106,103461.
  4. Hung, C. C.,Su, Y. F.(2016).Medium-term self-healing evaluation of Engineered Cementitious Composites with varying amounts of fly ash and exposure durations.Construction and Building Materials,118,194-203.
  5. Hung, C. C.,Su, Y. F.,Su, Y. M.(2018).Mechanical properties and self-healing evaluation of strain-hardening cementitious composites with high volumes of hybrid pozzolan materials.Composites Part B: Engineering,133,15-25.
  6. Hung, C.-C.,Chen, Y.-S.(2016).Innovative ECC jacketing for retrofitting shear-deficient RC members.Construction and Building Materials,111,408-418.
  7. Hung, C.-C.,Su, Y.-F.,Hung, H.-H.(2017).Impact of natural weathering on medium-term self-healing performance of fiber reinforced cementitious composites with intrinsic crack-width control capability.Cement and Concrete Composites,80,200-209.
  8. Hung, C.-C.,Yen, W.-M.,Yu, K.-H.(2016).Vulnerability and improvement of reinforced ECC flexural members under displacement reversals: Experimental investigation and computational analysis.Construction and Building Materials,107,287-298.
  9. Jin, Q.,Li, V. C.(2019).Development of lightweight engineered cementitious composite for durability enhancement of tall concrete wind towers.Cement and Concrete Composites,96,87-94.
  10. Kawashima, K.,Zafra, R. G.,Sasaki, T.,Kajiwara, K.,Nakayama, M.,Unjoh, S.,Sakai, J.,Yabe, M.(2012).Seismic performance of a full-size polypropylene fiber-reinforced cement composite bridge column based on E-defense shake table experiments.Journal of Earthquake Engineering,16(4),463-495.
  11. Kunieda, M.,Rokugo, K.(2006).Recent progress on HPFRCC in japan required performance and applications.Journal of Advanced Concrete Technology,4(1),19-33.
  12. Lepech, M. D.,Li, V. C.(2009).Application of ECC for bridge deck link slabs.Materials and Structures,42(9),1185-1195.
  13. Li, V. C.(2019).Engineered Cementitious Composites (ECC): Bendable Concrete for Sustainable and Resilient Infrastructure.Berlin, Heidelberg:Springer.
  14. Li, V. C.,Wang, S.(2006).Microstructure variability and macroscopic composite properties of high performance fiber reinforced cementitious composites.Probabilistic Engineering Mechanics,21(3),201-206.
  15. Li, V. C.,Wu, C.,Wang, S.,Ogawa, A.,Saito, T.(2002).Interface tailoring for strain-hardening polyvinyl alcohol-engineered cementitious composite (PVA-ECC).ACI Materials Journal,99(5),463-472.
  16. Lin, Y.,Lawley, D.,Wotherspoon, L.,Ingham, J. M.(2016).Out-of-plane testing of unreinforced masonry walls strengthened using ECC shotcrete.Structures,7,33-42.
  17. Maruta, M.(2005).New high-rise RC structure using pre-cast ECC coupling beam.Concrete Journal,43(11),18-26.
  18. National Research Institute for Earth Science and Disaster Prevention(2010)。National Research Institute for Earth Science and Disaster Prevention (NIED), “E-Defense を用いた橋梁耐震実験研究 C1-6 実験(橋梁 コンポーネト実験:次世代型橋梁へ序章” (2010).。
  19. Ozyildirim, H. C.,Moruza, G. M.(2016).High-performance grouting materials in shear keys between box beams.Transportation Research Record: Journal of the Transportation Research Board,2577(1),35-42.
  20. Parra-Montesinos, G.,Wight, J. K.(2000).Seismic response of exterior RC column-to-steel beam connections.Journal of Structural Engineering,126(10),1113-1121.
  21. Qiu, J.,Yang, E.-H.(2017).Micromechanics-based investigation of fatigue deterioration of engineered cementitious composite (ECC).Cement and Concrete Research,95,65-74.
  22. Ranade, R.,Li, V. C.,Stults, M. D.,Heard, W. F.,Rushing, T. S.(2013).Composite properties of high-strength, high-ductility concrete.ACI Materials Journal,110(4),413-422.
  23. Rokugo, K.,Kanda, T.,Yokota, H.,Sakata, N.(2009).Applications and recommendations of high performance fiber reinforced cement composites with multiple fine cracking (HPFRCC) in Japan.Materials and Structures,42(9),1197-1208.
  24. Sahmaran, M.,Li, V. C.,Andrade, C.(2008).Corrosion resistance performance of steel-reinforced engineered cementitious composite beams.ACI Materials Journal,105(3),243-250.
  25. Underground Professional Services(2009).,未出版
  26. Wang, S.(2005).Ann Arbor, MI,Department of Civil and Environmental Engineering, University of Michigan.
  27. Wang, S.,Li, V. C.(2006).Polyvinyl alcohol fiber reinforced engineered cementitious composites: Material design and performances.Proceedings of International RILEM workshop on HPFRCC in structural applications,Hawaii:
  28. Yu, J.,Lin, J.,Zhang, Z.,Li, V. C.(2015).Mechanical performance of ECC with high-volume fly ash after sub-elevated temperatures.Construction and Building Materials,99,82-89.
  29. Yu, K. Q.,Yu, J. T.,Dai, J. G.,Lu, Z. D.,Shah, S. P.(2018).Development of ultra-high performance engineered cementitious composites using polyethylene (PE) fibers.Construction and Building Materials,158,217-227.
  30. Zafra, R.,Kawashima, K.,Sasaki, T.,Kajiwara, K.,Nakayama, M.(2010).Cyclic stress-strain response of polypropylene fiber reinforced cement composites.Structural Engineering & Earthquake Engineering (SE/EE),66(1),162-171.
  31. Zhang, Q.,Li, V. C.(2015).Development of durable spray-applied fire-resistive Engineered Cementitious Composites (SFR-ECC).Cement and Concrete Composites,60,10-16.
被引用次数
  1. 顏誠皜,洪崇展(2022)。超高性能混凝土(UHPC)材料與結構應用及文獻回顧。土木水利,49(5),43-47。
  2. 顏誠皜,洪崇展,李宜璋(2022)。UHPC材料設計與製程。中國土木水利工程學刊,34(1),99-107。
  3. 顏誠皜,蔣啟恆,陳明谷,洪崇展,吳瑞安,吳秉益(2022)。臺南都會區北外環道路-超高性能混凝土(UHPC)伸縮縫之國內首例應用。中國土木水利工程學刊,34(1),53-62。
  4. 顏誠皜,溫國威,韋瀞雅,洪崇展(2022)。UHPC材料性質與工程應用。中國土木水利工程學刊,34(1),89-97。