题名

結合時空因子與InSAR觀測資料之地表崩塌變位預測分析

并列篇名

PREDICTION OF LANDSLIDES USING MACHINE LEARNING TECHNIQUES BASED ON SPATIO-TEMPORAL FACTORS AND INSAR DATA

DOI

10.6652/JoCICHE.202104_33(2).0002

作者

林彥廷(Yan-Ting Lin);顏筱穎(Hsiao-Ying Yen);張乃軒(Nai-Hsuan Chang);林宏明(Hung-Ming Lin);韓仁毓(Jen-Yu Han);楊國鑫(Kuo-Hsin Yang);陳俊杉(Chuin-Shan Chen);鄭宏逵(Hong-Kui Zheng);徐若堯(Jo-Yao Hsu)

关键词

崩塌預測 ; InSAR變位指標 ; 相關性分析 ; 機器學習 ; landslide prediction ; the displacement gradient of InSAR ; correlation analysis ; machine learning

期刊名称

中國土木水利工程學刊

卷期/出版年月

33卷2期(2021 / 04 / 01)

页次

93 - 104

内容语文

繁體中文

中文摘要

台灣山區陡峭地形和破碎地質,當颱風豪雨後坡地崩塌災害頻傳。複雜地理環境和極端氣候影響,如何有效運用空間觀測數據預測崩塌已是現行災害管理課題。隨著遙感探測技術發展,如衛星光譜影像和干涉合成孔徑雷達能以固定週期獲得地表屬性和幾何資訊。本研究運用新式遙測資訊,透過斜坡單元分析量化共十四種時空因子,由相關性分析偵測影響崩塌的因子,機器學習建構崩塌預測模型,依混淆矩陣評估預測品質。研究顯示崩塌預測成果優於80%正確率,並指出影響斜坡單元崩塌時空因素,為國土保育提供明確養護位址,並作工程選址、邊坡防護管理應用。

英文摘要

Taiwan's mountainous areas feature steep terrain and broken geological environment. With the invasion of typhoons or heavy rain events, slope disasters such as landslide and debris flow can occur frequently. As a result, how to effectively apply multiple spatial data to predict landslide has become a forward-looking topic for current disaster management. The development of remote sensing detection technology, such as satellite spectral images and interferometric synthetic aperture radar (InSAR) collected in a fixed period is able to help obtain information on earth surface properties and geometric changes. Through the spatial analysis of the slop units, this research quantifies a total of 14 spatiotemporal factors. The correlation analysis is employed to detect factors that significantly cause landslides, and then artificial intelligence machine learning is used to construct a landslide prediction model. Finally, the confusion matrix verifies the prediction results and evaluates the quality. The research shows that the landslide prediction is better than 80% correct and points out the spatiotemporal factors that affect the slope unit collapse in the survey area. This result also suggests clearer conservation sites and potential assessment for land conservation. The overall study will be effectively used as the application for project site selection, slope protection, and disaster prevention management.

主题分类 工程學 > 土木與建築工程
工程學 > 水利工程
工程學 > 市政與環境工程
参考文献
  1. Bianchini, S.,Cigna, F.,Del Ventisette, C.,Moretti, S.,Casagli, N.(2013).Monitoring landslide-induced displacementswith TerraSAR-X persistent scatterer interferometry (PSI): Gimigliano case study in Calabria region (Italy).International Journal of Geosciences,4,1467-1482.
  2. Flah, M.,Nunez, I.,Chaabene, W. B.,Nehdi, M. L.(2020).Machine learning algorithms in civil structural health monitoring: A systematic review.Archives of Computational Methods in Engineering,28,2621-2643.
  3. Franklin, J. A.(1975).Safety and economy in tunneling.Proceedings of the 10th Canadian rock mechanics symposium,Kingston, Ontario:
  4. Freund, Y.,Schapire, R. E.(1997).A decision-theoretic generalization of on-line learning and an application to boosting.Journal of Computer and System Sciences,55(1),119-139.
  5. Friedman, J. H.(2001).Greedy function approximation: A gradient boosting machine.Annals of Statistics,1189-1232.
  6. Ho, T. K.(1995).Random decision forests.Proceedings of 3rd International Conference on Document Analysis and Recognition IEEE
  7. Hooper, A.,Segall, P.,Zebker, H.(2007).Persistent scatterer interferometric synthetic aperture radar for crustal deformation analysis, with application Volcán Alcedo, Galápagos.Journal of Geophysical Research,112(B7),407.
  8. Keuchel, J.,Naumann, S.,Heiler, M.,Siegmund, A.(2003).Automatic land cover analysis for Tenerife by supervised classification using remotely sensed data.Remote Sensing of Environment,86(4),530-541.
  9. Lillesand, T. M.,Kiefer, R. W.,Chipman, J. W.(2004).Remote sensing and image interpretation.John Wiley and Sons Ltd.
  10. Lin, Y. T.,Yang, M. D.,Han, J. Y.,Su, Y. F.,Jang, J. H.(2020).Quantifying flood water levels using image-based volunteered geographic information.Remote Sensing,12(4),706.
  11. Mandal, S.,Mondal, S.(2019).Statisical apporaches for landslide susecptibiility assessment and prediction.Springer.
  12. Reich, Y.(1997).Machine learning techniques for civil engineering problems.Computer ‐ Aided Civil and Infrastructure Engineering,12(4),295-310.
  13. Rish, I.(2001).An empirical study of the naive Bayes classifier.IJCAI 2001 workshop on empirical methods in artificial intelligence,3(22),41-46.
  14. Safavian, S. R.,Landgrebe, D.(1991).A survey of decision tree classifier methodology.IEEE Transactions on Systems, Man, and Cybernetics,21(3),660-674.
  15. Shou, K. J.,Wu, C. C.,Lin, J. F.(2018).Predictive analysis of landslide susceptibility under climate change conditions - a study on the Ai-Liao watershed in southern Taiwan.Journal of GeoEngineering,13(1),13-27.
  16. Thirugnanam, H.,Ramesh, M. V.,Rangan, V. P.(2020).Enhancing the reliability of landslide early warning systems by machine learning.Landslides,17(9),2231-2246.
  17. Townshend, J. R.,Goff, T. E.,Tucker, C. J.(1985).Multitemporal dimensionality of images of normalized difference vegetation index at continental scales.IEEE Transactions on Geoscience and Remote Sensing,6,888-895.
  18. Turker, M.,Derenyi, E.(2000).GIS assisted change detection using remote sensing.Geocarto International,15(1),51-56.
  19. Wen, C. G.,Tateishi, R.,Harahsheh, H.(2000).Asian 30-second land cover dataset.The Arab World Geographer,3(2),132-140.
  20. Xie, M.,Esaki, T.,Zhou, G.(2004).GIS-based probabilistic mapping of landslide hazard using a three-dimensional deterministic model.Natural Hazards,33(2),265-282.