题名

季節性集水區動態儲水特性評估

并列篇名

ASSESSMENT OF SEASONAL CATCHMENT DYNAMIC STORAGE CHARACTERISTICS

DOI

10.6652/JoCICHE.202105_33(3).0005

作者

黃嘉琦(Chia-Chi Huang);葉信富(Hsin-Fu Yeh);柯建仲(Chien-Chung Ke);陳耐錦(Nai-Chin Chen)

关键词

動態儲水量 ; 乾濕季 ; 流量延時曲線 ; 水平衡 ; dynamic storage ; dry and wet seasons ; flow duration curve ; water balance

期刊名称

中國土木水利工程學刊

卷期/出版年月

33卷3期(2021 / 05 / 01)

页次

225 - 232

内容语文

繁體中文

中文摘要

動態儲水量為對於外在因素(如氣候與人為活動)較為敏感的地下水儲存量,其扮演著維持生態與人類用水以及減緩環境變遷影響的重要角色,但動態儲水量實際可能由貢獻河川、蒸發散或其他地下水損失的水文分量所組成。因此,本研究透過流量延時曲線解析模型與水平衡方法推估季節性消退特徵與動態儲水量,探討動態儲水組成與模型對於集水區尺度之適用性。結果說明消退特徵的季節性差異與動態儲水通過的含水層以及流域特徵有關。動態儲水組成則顯示乾濕季額外地下水儲存的明顯差異,本研究成果可作為水文模擬與預測及未來水資源管理決策所參考。

英文摘要

Dynamic storage is the part of groundwater storage that is more sensitive to the external factors (e.g. climate change, human activities). It plays a critical role on maintaining the ecological habitat and human water use and mediating the hydrological impact from environmental change. Previous studies have widely explored the storage-discharge relationship through the simple water balance, applying to estimate the groundwater storage at the catchment or basin scale. However, the dynamic storage consists not only streamflow generation but also evapotranspiration, and other possible paths for groundwater loss. Therefore, the aim of this study is using the flow duration curve model to estimate the seasonal recession characteristics and direct storages which represent the aquifer discharge contribute to river, understanding the model applicability to the catchment scale. We then combine the water balance method to estimate the indirect storage which is insensitive to streamflow, exploring the seasonal dynamic storage components. The results showed that the seasonal difference in the recession characteristics is related to the aquifer range that the dynamic storage passes through and the catchment characteristics. The dynamic storage components show a significant difference in additional groundwater storage between the dry and wet seasons. These results can be used as a reference for hydrological simulation and prediction, and future water resources management.

主题分类 工程學 > 土木與建築工程
工程學 > 水利工程
工程學 > 市政與環境工程
参考文献
  1. Arai, R.,Toyoda, Y.,Kazama, S.(2020).Runoff recession features in an analytical probabilistic streamflow model.Journal of Hydrology,597,125745.
  2. Arumí, J. L.,Maureira, H.,Souvignet, M.,Pérez, C.,Rivera, D.,Oyarzún, R.(2016).Where does the water go? Understanding geohydrological behaviour of Andean catchments in south-central Chile.Hydrological Sciences Journal,61(5),844-855.
  3. Bart, R.,Hope, A.(2014).Inter-seasonal variability in baseflow recession rates: The role of aquifer antecedent storage in central California watersheds.Journal of Hydrology,519,205-213.
  4. Basso, S.,Schirmer, M.,Botter, G.(2015).On the emergence of heavy-tailed streamflow distributions.Advances in Water Resources,82,98-105.
  5. Beven, K.(1989).Changing ideas in hydrology—the case of physically-based models.Journal of Hydrology,105(1-2),157-172.
  6. Birkel, C.,Soulsby, C.,Tetzlaff, D.(2011).Modelling catchment‐scale water storage dynamics: Reconciling dynamic storage with tracer‐inferred passive storage.Hydrological Processes,25(25),3924-3936.
  7. Biswal, B.,Nagesh Kumar, D.(2014).Study of dynamic behaviour of recession curves.Hydrological Processes,28(3),784-792.
  8. Botter, G.,Basso, S.,Rodriguez-Iturbe, I.,Rinaldo, A.(2013).Resilience of river flow regimes.Proceedings of the National Academy of Sciences of the United States of America,110(32),12925-12930.
  9. Botter, G.,Peratoner, F.,Porporato, A.,Rodriguez-Iturbe, I.,Rinaldo, A.(2007).Signatures of large-scale soil moisture dynamics on streamflow statistics across US climate regimes.Water Resources Research,43,W11413.
  10. Botter, G.,Porporato, A.,Rodriguez-Iturbe, I.,Rinaldo, A.(2007).Basin-scale soil moisture dynamics and the probabilistic characterization of carrier hydrologic flows: Slow, leachingprone components of the hydrologic response.Water Resources Research,43,W02417.
  11. Botter, G.,Porporato, A.,Rodriguez-Iturbe, I.,Rinaldo, A.(2009).Nonlinear storage-discharge relations and catchment streamflow regimes.Water Resources Research,45,W10427.
  12. Brutsaert, W.(2008).Long‐term groundwater storage trends estimated from streamflow records: Climatic perspective.Water Resources Research,44(2),W02409.
  13. Brutsaert, W.,Nieber, J. L(1977).Regionalized drought flow hydrographs from a mature glaciated plateau.Water Resources Research,13,637-643.
  14. Cochand, M.,Christe, P.,Ornstein, P.,Hunkeler, D.(2019).Groundwater storage in high alpine catchments and its contribution to streamflow.Water Resources Research,55(4),2613-2630.
  15. Doulatyari, B.,Betterle, A.,Radny, D.,Celegon, E. A.,Fanton, P.,Schirmer, M.,Botter, G.(2017).Patterns of streamflow regimes along the river network: The case of the Thur river.Environmental Modelling & Software,93,42-58.
  16. Dralle, D. N.,Hahm, W. J.,Rempe, D. M.,Karst, N. J.,Thompson, S. E.,Dietrich, W. E.(2018).Quantification of the seasonal hillslope water storage that does not drive streamflow.Hydrological Processes,32(13),1978-1992.
  17. Dralle, D. N.,Karst, N. J.,Charalampous, K.,Veenstra, A.,Thompson, S. E.(2017).Event-scale power law recession analysis: Quantifying methodological uncertainty.Hydrology and Earth System Sciences,21(1),65-81.
  18. Dralle, D.,Karst, N.,Thompson, S. E.(2015).a, b careful: The challenge of scale invariance for comparative analyses in power law models of the streamflow recession.Geophysical Research Letters,42(21),9285-9293.
  19. Famiglietti, J. S.(2014).The global groundwater crisis.Nature Climate Change,4(11),945-948.
  20. Hinzman, A. M.,Sjöberg, Y.,Lyon, S. W.,Ploum, S. W.,van der Velde, Y.(2020).Increasing non‐linearity of the storage‐discharge relationship in sub‐Arctic catchments.Hydrological Processes,34(19),3894-3909.
  21. Jachens, E. R.,Rupp, D. E.,Roques, C.,Selker, J. S.(2020).Recession analysis revisited: Impacts of climate on parameter estimation.Hydrology and Earth System Sciences,24(3),1159-1170.
  22. Kirchner, J. W.(2009).Catchments as simple dynamical systems: Catchment characterization, rainfall‐runoff modeling, and doing hydrology backward.Water Resources Research,45(2),1-34.
  23. Lin, L.,Gao, M.,Liu, J.,Wang, J.,Wang, S.,Chen, X.,Liu, H.(2020).Understanding the effects of climate warming on streamflow and active groundwater storage in an alpine catchment: the upper Lhasa River.Hydrology & Earth System Sciences,24(3),1145-1157.
  24. Martens, B.,Miralles, D. G.,Lievens, H.,van der Schalie, R.,de Jeu, R. A. M.,Fernández-Prieto, D.,Beck, H. E.,Dorigo, W. A.,Verhoest, N. E. C.(2017).GLEAM v3: satellite-based land evaporation and root-zone soil moisture.Geoscientific Model Development,10,1903-1925.
  25. McIntosh, J. C.,Schaumberg, C.,Perdrial, J.,Harpold, A.,Vázquez‐Ortega, A.,Rasmussen, C.,Vinson, D.,Zapata‐Rios, X.,Brooks, P. D.,Meixner, T.,Pelletier, J.,Derry, L.,Chorover, J.(2017).Geochemical evolution of the Critical Zone across variable time scales informs concentration‐ discharge relationships: Jemez River Basin Critical Zone Observatory.Water Resources Research,53,4169-4196.
  26. Meriö, L. J.,Ala‐Aho, P.,Linjama, J.,Hjort, J,Kløve, B.,Marttila, H.(2019).Snow to precipitation ratio controls catchment storage and summer flows in boreal headwater catchments.Water Resources Research,55(5),4096-4109.
  27. Miralles, D. G.,Holmes, T. R. H.,de Jeu, R. A. M.,Gash, J. H.,Meesters, A. G. C. A.,Dolman, A. J.(2011).Global land-surface evaporation estimated from satellite-based observations.Hydrology and Earth System Sciences,15,453-469.
  28. Müller, M. F.,Dralle, D. N.,Thompson, S. E.(2014).Analytical model for flow duration curves in seasonally dry climates.Water Resources Research,50(7),5510-5531.
  29. Naghettini, M.(2017).Preliminary Analysis of Hydrologic Data.Springer Cham.
  30. Riegger, J.,Tourian, M. J.(2014).Characterization of runoff‐storage relationships by satellite gravimetry and remote sensing.Water Resources Research,50(4),3444-3466.
  31. Rihani, J. F.,Maxwell, R. M.,Chow, F. K.(2010).Coupling groundwater and land surface processes: Idealized simulations to identify effects of terrain and subsurface heterogeneity on land surface energy fluxes.Water Resources Research,46(12),W12523.
  32. Rodriguez-Iturbe, I.,Porporato, A.,Ridolfi, L.,Isham, V.,Coxi, D. R.(1999).Probabilistic modelling of water balance at a point: The role of climate, soil and vegetation.Proceedings of the Royal Society of Physical and Engineering Sciences,455,3789-3805.
  33. Santos, A. C.,Portela, M. M.,Rinaldo, A.,Schaefli, B.(2019).Estimation of streamflow recession parameters: New insights from an analytic streamflow distribution model.Hydrological Processes,33(11),1595-1609.
  34. Santos, A. C.,Portela, M. M.,Rinaldo, A.,Schaefli, B.(2018).Analytical flow duration curves for summer streamflow in Switzerland.Hydrology and Earth System Sciences,22(4),2377-2389.
  35. Sayama, T.,McDonnell, J. J.,Dhakal, A.,Sullivan, K.(2011).How much water can a watershed store?.Hydrological Processes,25(25),3899-3908.
  36. Schaefli, B.,Rinaldo, A.,Botter, G.(2013).Analytic probability distributions for snow- dominated streamflow.Water Resources Research,49(5),2701-2713.
  37. Seibert, J.,Vis, M. J.(2012).Teaching hydrological modeling with a user-friendly catchment-runoff-model software package.Hydrology and Earth System Sciences,16(9),3315-3325.
  38. Staudinger, M.,Stoelzle, M.,Seeger, S.,Seibert, J.,Weiler, M.,Stahl, K.(2017).Catchment water storage variation with elevation.Hydrological Processes,31(11),2000-2015.
  39. Tashie, A.,Pavelsky, T.,Band, L. E.(2020).An empirical reevaluation of streamflow recession analysis at the continental scale.Water Resources Research,56(1),e2019WR025448.
  40. Tashie, A.,Pavelsky, T.,Emanuel, R. E.(2020).Spatial and Temporal Patterns in Baseflow Recession in the Continental United States.Water Resources Research,56(3),e2019WR026425.
  41. Verma, K.,Katpatal, Y. B.(2020).Groundwater monitoring using GRACE and GLDAS data after downscaling within basaltic aquifer system.Groundwater,58(1),143-151.
  42. 林承賢(2012)。臺北,國立臺灣大學生物環境系統工程學研究所。
  43. 張琬渝(2013)。臺北,國立臺灣大學生物環境系統工程學研究所。
  44. 經濟部水利署,中華民國一○八年臺灣水文年報 (2019)。