题名

孔內多深度光纖光柵水壓與溫度感測系統研發與測試

并列篇名

DEVELOPMENT AND TEST OF MULTI-LEVEL FIBER BRAGG GRATING TEMPERATURE AND WATER PRESSURE SENSING SYSTEM IN THE BOREHOLE

DOI

10.6652/JoCICHE.202105_33(3).0007

作者

何彥德(Yen-Te Ho);蔡瑞彬(Jui-Pin Tsai);張良正(Liang-Cheng Chang);王子賓(Tzu-Pin Wang);董天行(Tien-Hsing Tung);葉欣瑋(Sin-Wei Yeh);張家豪(Chia-Hao Chang)

关键词

多層式光纖光柵感測系統 ; 地下水壓 ; 地下水溫 ; multi-level fiber grating sensing system ; groundwater pressure ; groundwater temperature

期刊名称

中國土木水利工程學刊

卷期/出版年月

33卷3期(2021 / 05 / 01)

页次

245 - 251

内容语文

繁體中文

中文摘要

含水層常為地下水使用的來源,一旦遭受污染將立即影響供水安全,且其復育的難度甚高。為預測整治藥劑與污染團在深層含水層的移動路徑,了解地下水特性 (如地下水質、水位與水溫等)相當關鍵。然而,傳統觀測井多僅在特定深度開篩,只能觀測地下水在含水層中的平均狀態,故所得資訊有限。據此,本研究使用光纖布拉格光柵(Fiber Bragg Grating, FBG)發展多層地下水壓與溫度量測系統,可在一個鑽井內同時進行數個深度的水壓與溫度量測。光纖有遠距離訊號傳輸穩定、訊號不易受水與電磁波干擾、安全性高等優點。本研究透過室內與現地測試驗證與展現此系統的性能。

英文摘要

Groundwater are the main source of water supply in the semi-arid or arid areas. If the aquifers are contaminated, it will immediately affect people's health. Meanwhile, groundwater rehabilitation will also face great challenges. To predict the movement path of the remediation agent and the plume in the aquifer, it is very important to observe the aquifer status, such as water quality, water pressure, temperature, etc. However, the traditional EPA monitoring well always opens screen at a specific depth range and can only measure the average aquifer status, which can provide limited information for groundwater delineation. To address this issue, we employ fiber Bragg grating (FBG) technology to develop a multi-level groundwater pressure and temperature sensing system, which can simultaneously measure multiple water pressures and temperatures at different depths in the same borehole. This system takes the advantage of optical fiber: long-distance and stable signal transmission, the signal is not easily interfered by water and electromagnetic waves, and no sparks. To demonstrate the capability of the developed multi-depth discrete FBG sensing system, we have conducted an indoor test and an on-site test, and the results are discussed in this study.

主题分类 工程學 > 土木與建築工程
工程學 > 水利工程
工程學 > 市政與環境工程
参考文献
  1. Carucci, V.,Petitta, M.,Aravena, R.(2012).Interaction between shallow and deep aquifers in the Tivoli Plain (Central Italy) enhanced by groundwater extraction: A multi-isotope approach and geochemical modeling.Applied Geochemistry,27(1),266-280.
  2. Dong, X.,Shum, P.,Yang, X.,Lim, M. F.,Chan, C. C.(2005).Bandwidth-tunable filter and spacing-tunable comb filter with chirped-fiber Bragg gratings.Optics Communications,259(2),645-648.
  3. Elçi, A.,Flach, G. P.,Molz, F. J.(2003).Detrimental effects of natural vertical head gradients on chemical and water level measurements in observation wells: Identification and control.Journal of Hydrology,281(1),70-81.
  4. Guo, H.,Shen, Z.,Chen, Y.,Zhao, K.,Li, H.,Xiu, W.,Weng, L. J. E. S. W. C.(2019).Differences in hydrogeochemistry between shallow and deep aquifers in the Baiyangdian basin, China.E3S Web of Conferences,98,07009.
  5. Huang, A. B.,Lee, J. T.,Ho, Y. T.,Chiu, Y. F.,Cheng, S. Y.(2012).Stability monitoring of rainfall induced deep landslides through pore pressure profile measurements.Soils and Foundations,52(4),737-747.
  6. Juhasz, A. L.,Smith, E.,Waller, N.,Stewart, R.,Weber, J.(2010).Bioavailability of residual polycyclic aromatic hydrocarbons following enhanced natural attenuation of creosote-contaminated soil.Environmental Pollution,158(2),585-591.
  7. Kashyap, R.(1999).Fiber Bragg gratings.San Diego:Academic Press.
  8. Kersey, A. D.(1992).Multiplexed fiber optic sensors.Proceedings, Fiber Optic Sensors, Boston, Massachusetts,Boston, Massachusetts:
  9. Kojima, S.,Hishida, Y.,Fukuchi, K.,Hongo, A.(2003).Optical fiber sensor using fiber Bragg grating for river management.16th International Conference on Optical Fiber Sensors,Nara, Japan:
  10. Liu, Y.,Guo, Z.,Zhang, Y.,Chiang, K. S.,Dong, X.(2000).Simultaneous pressure and temper-ature measurement with polymer-coated fiber Bragg grating.Electron Lett.,36,564-566.
  11. Mohamed, A.-M. O.(Ed.),Paleologos, E. K.(Ed.)(2018).Fundamentals of Geoenvironmental Engineering.Butterworth Heinemann.
  12. Papini, M.,Majone, M.,Arjmand, F.,Silvestri, D.,Sagliaschi, M.,Sucato, S.,Alesi, E.,Barstch, E.,Pierro, L.(2016).First pilot test on the integration of GCW (Groundwater Circulation Well) with ENA (Enhanced Natural Attenuation) for chlorinated solvents source remediation.Chemical Engineering Transactions,49,91-96.
  13. Rügner, H.,Finkel, M.,Kaschl, A.,Bittens, M.(2006).Application of monitored natural attenuation in contaminated land management — A review and recommended approach for Europe.Environmental Science & Policy,9(6),568-576.
  14. Sarkar, D.,Ferguson, M.,Datta, R.,Birnbaum, S.(2005).Bioremediation of petroleum hydrocarbons in contaminated soils: comparison of biosolids addition, carbon supplementation, and monitored natural attenuation.Environmental Pollution,136(1),187-195.
  15. Sjöberg, Y.,Coon, E.,K. Sannel, A. B.,Pannetier, R.,Harp, D.,Frampton, A.,Painter, S. L.,Lyon, S. W.(2016).Thermal effects of groundwater flow through subarctic fens: A case study based on field observations and numerical modeling.Water Resources Research,52(3),1591-1606.
  16. Wittenberg, H.,Aksoy, H.,Miegel, K.(2019).Fast response of groundwater to heavy rainfall.Journal of Hydrology,571,837-842.
  17. Xu, M. G.,Reekie, L.,Chow, Y. T.,Dakin, J. P.(1993).Optical in-fiber Grating High pressure sensor.Electron Letter,29,398-399.
  18. Zhao, Y.,Yu, C.,Liao, Y.(2004).Differential FBG sensor for temperature-compensated high-pressure (or displacement) measurement.Optics & Laser Technology,36,39-42.
  19. 李瑞庭(2005)。新竹,國立交通大學土木工程研究所。
  20. 黃安斌,王建智,莊子賢,李瑞庭,何彥德(2013)。整合式地層內孔隙水壓與位移剖面量測。地工技術,136,83-94。