题名

探討添加飛灰於斷面補修用之聚合物水泥砂漿的益處

并列篇名

DISCUSS THE BENEFITS OF ADDING FLY ASH TO POLYMER CEMENT MORTAR FOR PATCH REPAIR

DOI

10.6652/JoCICHE.202109_33(5).0004

作者

高玉荃(Yu-Chuan Kao);邱建國(Chien-Kuo Chiu);上田隆雄(Takao Ueda)

关键词

斷面修復法 ; 聚合物水泥砂漿補修材料 ; 飛灰 ; 氯離子 ; patch repair material ; SBR ; fly ash ; chloride ion

期刊名称

中國土木水利工程學刊

卷期/出版年月

33卷5期(2021 / 09 / 01)

页次

367 - 377

内容语文

繁體中文

中文摘要

當受鹽害侵蝕之鋼筋混凝土建築物被斷面補修後,因混凝土和斷面補修材料間的氯離子濃度差異,可能導致混凝土中的鋼筋被加速腐蝕。本研究研擬將飛灰添加於市售之聚合物水泥砂漿補修材料內,探討飛灰改善新舊材料介面處之氯離子傳遞問題。據結果表示,斷面補修後,使用聚合物水泥砂漿會使氯離子選擇從阻抗小之混凝土部分進入,而加速混凝土部分之侵蝕,但添加飛灰可降低補修材料之阻抗來減緩此問題。其次,以飛灰取代部分水泥之方式探討不同比例之SBR對水泥砂漿補修材料之影響。發現飛灰與SBR混合使用時,降低SBR之使用量亦可達到與高含量SBR有差不多之耐久性能和耐候性能,亦可降低補修材料之成本。

英文摘要

When the reinforced concrete corroded by chloride ions are repaired of the patch repair method, the steel bars in concrete will accelerate corrosion due to the different concentrations of chloride ion between the concrete and the patch repair materials. In this study, propose adding fly ash to commercial products of polymer cement mortar used for patch repair materials to explore the problem of fly ash can improve the chloride ion transmission at the interface between the concrete and the patch repair materials. According to the results, components after the patch repair, using polymer cement mortar will cause the chloride ions to choose to enter from the concrete with low-impedance, making concrete accelerate corrosion. But adding fly ash can reduce the resistance of the patch repair material to alleviate this problem. Secondly, the effect of different proportions of SBR on patch repair materials is discussed by replacing part of cement with fly ash. It was found that when fly ash and SBR are mixed using, reducing the amount of SBR can achieve similar durability and weather resistance to high-content SBR, and can also reduce the cost of patch repair materials.

主题分类 工程學 > 土木與建築工程
工程學 > 水利工程
工程學 > 市政與環境工程
参考文献
  1. AMETEK.Inc, https://www.atlas-mts.cn/knowledge-center/library/brochures.
  2. Batis, G.,Pantazopoulou, P.,Tsivilis, S.,Badogiannis, E(2005).The effect of metakaolin on the corrosion behaviour of cement mortars.Cement and Concrete Composites,27(1),125-130.
  3. Dempsey, B. J.,Thompson, M. R.(1967).Durability properties of lime-soil mixtures.Bureau of Public Roads
  4. Dhir, R. K.,Jones, M. R.(1999).Development of chlorideresisting concrete using fly ash.Fuel,78(2),137-142.
  5. Diab, A. M.,Elyamany, H. E.,Ali, A. H.(2013).Experimental investigation of the effect of latex solid/water ratio on latex modified co-matrix mechanical properties.Alexandria Engineering Journal,52(1),83-98.
  6. Hewlett, P. C.(1998).Lea’s Chemistry of Cement and Concrete.New York:John Wily and Sons Inc..
  7. Hwang, E. H.,Ko, Y. S.,Jeon, J. K.(2008).Effect of polymer cement modifiers on mechanical and physical properties of polymer-modified mortar using recycled artificial marble waste fine aggregate.Journal of Industrial and Engineering Chemistry,14(2),265-271.
  8. Japan Society of Civil Engineers(1997).Current status and future trends of research on corrosion / corrosion protection and repair of reinforcing bars: Report of the Subcommittee on Corrosion Control of Concrete Committee.Japan Society of Civil Engineers
  9. Kampala, A.,Horpibulsuk, S.,Prongmanee, N.,Chinkulkijniwat, A.(2013).Influence of wet-dry cycles on compressive strength of calcium carbide residue–fly ash stabilized clay.Journal of Materials in Civil Engineering,26(4),633-643.
  10. Kao, Y. C.,Ueda, T.,Chiu, C. K.(2017)。Evaluation of SteelCorrosion in Fly Ash Concrete Containing Chlorides Using Electrochemical Indexes。材料,66(8),566-573。
  11. Kao, Y. C.,Ueda, T.,Chiu, C. K.(2018)。Evaluation of Repair Effect of Patch Repair Materials Containing Fly Ash and Lithium Nitrite。材料,67(8),795-802。
  12. Lee, H. S.,Shin, S. W.(2007).Evaluation of the effect of lithium nitrite corrosion inhibitor by the corrosion sensors embedded in mortar.Construction and Building Materials,21(1),1-6.
  13. Ohama, Y.(1996).Polymer-based materials for repair and improved durability: Japanese experience.Construction and Building Materials,10(1),77-82.
  14. Ohama, Y.,Kan, S.(1982).Effects of specimen size on strength and drying shrinkage of polymer-modified concrete.International Journal of Cement Composites and Lightweight Concrete,4(4),229-233.
  15. Otsuki, N.,Nagataki, S.,Nakashita, K.(1993).Evaluation of the AgNO3 solution spray method for measurement of chloride penetration into hardened cementitious matrix materials.Construction and Building Materials,7(4),195-201.
  16. Stampino, P. G.,Zampori, L.,Dotelli, G.,Meloni, P.,Sora, N.,Pelosato, R.(2009).Use of admixtures in organiccontaminated cement–clay pastes.Journal of hazardous materials,161(2-3),862-870.
  17. Wagner, H. B.(1965).Polymer-modified hydraulic cements.Industrial & Engineering Chemistry Product Research and Development,4(3),191-196.
  18. 中國建築科學研究院(1995).混凝土實用手冊.北京:中國建築工業出版社.
  19. 日本コンクリート工学協会(2016)。コンクリート診断技術‘16。日本:日本コンクリート工学協会。
  20. 日本建築學會(1997)。鉄筋コンクリート造建築物の耐久性調査・診断および補修指針 (案)・同解説。日本:日本建築學會。
  21. 交通部運輸研究所(2012).港灣混凝土構造物修補材料與工法之研究 (1/4).台灣:交通部運輸研究所.
  22. 行政院公共工程委員會(1999).公共工程飛灰混凝土使用手冊.台灣:行政院公共工程委員會.
  23. 邱建國,陳君弢,林昭妤,姚廷穎(2019)。內政部建築研究所委託研究成果報告內政部建築研究所委託研究成果報告,台北:內政部建築研究所。
  24. 陳振欣(2005)。基隆,國立臺灣海洋大學材料工程研究所。