题名

建置智慧物聯網工業園區以即時監測管理廢污水系統

并列篇名

THE REAL TIME WATER QUALITY AND ALERTING FOR WASTEWATER TREATMENT PLANT BY INTELLIGENT SYSTEM

DOI

10.6652/JoCICHE.202110_33(6).0005

作者

鄭詠紜(Yung-Yun Cheng);駱尚廉(Shang-Ling Lo)

关键词

物聯網 ; 水質監測 ; 無線感測網路 ; 人工智慧 ; internet of things ; water quality monitoring ; wireless sensor network ; artificial intelligence

期刊名称

中國土木水利工程學刊

卷期/出版年月

33卷6期(2021 / 10 / 01)

页次

451 - 459

内容语文

繁體中文

中文摘要

物聯網(Internet of Things, IoT)為現今資訊科技發展重要趨勢之一,是網際網路、傳統電信網等資訊承載體,讓所有能行使獨立功能的普通物體實作互聯互通,由下到上將硬體感測層所收集的資訊透過網路層連結至雲端軟體應用平台,透過三層之科技整合應用,突破人類資訊管理的極限,大幅降低大數據分析的成本與困難度。AIoT為融合人工智慧技術(Artificial Intelligence, AI)與物聯網技術的新應用型態,將物聯網所收集大量數據儲存於雲端以及邊端,再透過大數據分析以及更高形式的人工智能,實現萬物智慧化。本研究於各工業區內設置監測點,利用即時監測設備全時監測不同工業區需求項目,如污水排放源頭監督、雨水下水道水位水質監測、污水排放口水質監督管理等,將測量數據及影像即時透過物聯網回傳,以使人員可於遠端監看即時測值,並整合各項目之監控平台,不僅有助於設施設備監控預警,亦能檢討評估處理操作成效,以達成預測性維護及災害預防等操作成效。

英文摘要

Internet of Things (IoT) is one of import trend in information technology. The "things" are embedded sensors, gateways and software. The IoT system helps us collection the big data. It is useful to decrease the cost of data collection. The big data needs complicated computing. Artificial Intelligence is the simulation of human intelligence processes by machines. Combination of Artificial Intelligence and IoT (AIoT) are bringing intelligence to the edge. This study sets up monitoring points in each industrial zone, and uses real-time monitoring equipment to monitor the needs of different industrial zones at all times, such as monitoring the source of sewage discharge, monitoring the water level of rainwater channels, and monitoring the water quality of sewage discharge outlets. The measurement data and images are real-time Through the Internet of Things backhaul, so that personnel can remotely monitor real-time measured values, and integrate the monitoring platform of each project, not only to help facility equipment monitoring and early warning, but also to review and evaluate the effectiveness of processing operations to achieve predictive maintenance and perational effectiveness such as disaster prevention.

主题分类 工程學 > 土木與建築工程
工程學 > 水利工程
工程學 > 市政與環境工程
参考文献
  1. Bogena, H. R.,Huisman, J. A.,Oberdörster, C.,Vereecken, H.(2007).Evaluation of a low-cost soil water content sensor for wireless network applications.Journal of Hydrology,344,32-42.
  2. Borgia, E.(2014).The internet of things vision: Key features, applications and open issues.Computer. Communications,54,1-31.
  3. Capella, J. V.,Bonastre, A.,Ors, R.,Peris, M.(2013).In line river monitoring of nitrate concentration by means of a wireless sensor network with energy harvesting.Sensors and Actuators B: Chemical,177,419-427.
  4. 經濟部工業局 - 109 年度龜山工業區簡介https://www.moeaidb.gov.tw/ctlr?PRO=document.rwdDocTitleView&id=2742&t=1#109%E5%B9%B4%E5%BA%A6%E9%BE%9C%E5%B1%B1%E5%B7%A5%E6%A5%AD%E5%8D%80%E7%B0%A1%E4%BB%8B
  5. Fu, C.,Ye, L.,Liu, R.,Lung, B.,Cheng, Y.,Zeng, Y.(2004).Predictive maintenance in intelligent-control-maintenance-management system for hydroelectric generating unit.IEEE Transactions on Energy Conversion,179-186.
  6. Lee, M. W.,Hong, S. H.,Choi, S.,Kim, J. H.,Lee, D. S.,Park, J. M.(2008).Real-time remote monitoring of smallscaled biological wastewater treatment plants by a multivariate statistical process control and neural network-based software sensors.Process Biochemistry,43,1107-1113.
  7. Martínez, R.,Pastor, J.,Álvarez, B.,Iborra, A.(2016).A testbed to evaluate the fiware-based IoT platform in the domain of precision agriculture.Sensors,16,1979.
  8. Mineraud, J.,Mazhelis, O.,Su, X.,Tarkom, S.(2016).A gap analysis of internet-of-things platforms.Computer. Communications,89,5-16.
  9. Neal, J. C.,Atkinson, P. M.,Hutton, C. W.(2012).Adaptive space–time sampling with wireless sensor nodes for flood forecasting.Journal of Hydrology,414-415,136-147.
  10. O’Brien, M.,Mack, J.,Lennox, B.,Lovett, D.,Wall, A. J. C. E. P.(2011).Model predictive control of an activated sludge process: A case study.Control Engineering Practice,19(1),54-61.
  11. Pleau, M.,Colas, H.,Lavallée, P.,Pelletier, Geneviève,Bonin, Richard(2005).Global optimal real-time control of the Quebec urban drainage system.Environmental Modelling & Software,20,401-413.
  12. Sarkar, A.,Pandey, P.(2015).River water quality modelling using artificial neural network technique.Aquat. Procedia,4,1070-1077.
  13. Víctor, M. S. P.,Salvador S. C.(2012).Integrated sensor and management system for urban waste water networks and prevention of critical situations.Computers, Environment and Urban Systems,36,65-80.
  14. Wang, X.,Ratnaweera, H.,Holm, J. A.,Olsbu, V. J. J. o. e. m.(2017).Statistical monitoring and dynamic simulation of a wastewater treatment plant: a combined approach to achieve model predictive control.Journal of Environmental Management,193,1-7.
  15. Yang, S.,Chang, L.(2012).Regional inundation forecasting using machine learning techniques with the internet of things.Water,6,65-80.
  16. Yue, R.,Ying, T.(2012).A novel water quality monitoring system based on solar power supply.Wireless Sensor Network,12,265-272.
  17. Zia, H.,Harris, N. R.,Merrett, G. V.,Rivers, M.,Coles, N.(2013).The impact of agricultural activities on water quality: A case for collaborative catchment-scale management using integrated wireless sensor networks.Computers and Electronics in Agriculture,96,126-138.