题名

廣域崩塌偵測品質精進初探-以經典群集分析為例

并列篇名

IMPROVING REGIONAL LANDSLIDE DETECTIONS WITH A CLASSICAL CLUSTERING ALGORITHMS-A PRELIMINARY EXPLORATION

DOI

10.6652/JoCICHE.202111_33(7).0007

作者

賴哲儇(Jhe-Syuan Lai);黃俊議(Jun-Yi Huang)

关键词

群集分析 ; 資料探勘 ; 數值高程模型 ; 崩塌目錄 ; cluster analysis ; data mining ; digital elevation model ; landslide inventory

期刊名称

中國土木水利工程學刊

卷期/出版年月

33卷7期(2021 / 11 / 01)

页次

535 - 544

内容语文

繁體中文

中文摘要

臺灣頻繁地發生降雨型坡地崩塌,如何運用崩塌目錄(或稱資料庫)探討崩塌成因是重要課題。自然坡地崩塌特徵可分為崩塌源頭與Run-out,前者是崩塌發生的主因,Run-out為後續反應。若將Run-out 範圍一併進行崩塌分析,可能使成果產生偏差。本研究結合數值高程模型衍生的地形因子與基於分群的K-means++資料探勘演算法,並以兩組實驗評估演算法分離崩塌源頭和Run-out特徵的可行性與實務應用性。成果顯示,K-means++分群之整體精度超過70%,甚至部分多邊形樣本成果高於90%,證實群集分析分離崩塌源頭與Run-out特徵的可行性。此外,成果亦顯示不同面積多邊形樣本之分群成效,突顯崩塌偵測升級至目錄製作的實務應用價值。

英文摘要

Landslides are frequently induced by heavy rainfall events in Taiwan. Landslide inventory (or database) is an important material to explore the occurrences of landslides. Natural terrain landslides usually include landslide source and run-out features. The landslide source is the major area of the occurrence, while the run-out feature reveals the subsequent reaction. The run-out area should be separated or eliminated from the landslide source areas in order to avoid the bias when modeling landslide behaviors. This study combined the topographic factors derived from the digital elevation model (DEM) with a cluster-based data mining algorithm to separate landslide source and run-out areas. Two experiments were designed for examining the feasibility and applicability of the k-means++ algorithm. Preliminary results revealed that the developed model can approximately reach 70% at least for overall accuracies, and some polygon cases were further higher than 90%. It demonstrated the feasibility of the cluster analysis to separate the landslide source and run-out features. In addition, the applicability of improving the landslide detections for producing the inventory can be observed by the different group samples based on different area sizes extracted from the landslide polygons.

主题分类 工程學 > 土木與建築工程
工程學 > 水利工程
工程學 > 市政與環境工程
参考文献
  1. Arabameri, A.,Saha, S.,Roy, J.,Chen, W.,Blaschke, T.,Tien, B. D.(2020).Landslide susceptibility evaluation and management using different machine learning methods in the Gallicash River Watershed, Iran.Remote Sensing,12(3),475.
  2. Arthur, D.,Vassilvitskii, S.(2006).k–means++: the advantages of careful seeding.Proceedings of the Eighteenth Annual ACM–SIAM Symposium on Discrete Algorithms,New Orleans, USA:
  3. Borrelli, L.,Ciurleo, M.,Gullà, G.(2018).Shallow landslide susceptibility assessment in granitic rocks using GIS-based statistical methods: the contribution of the weathering grade map.Landslides,15(6),1127-1142.
  4. Chang, Z.,Du, Z.,Zhang, F.,Huang, F.,Chen, J.,Li, W.,Guo, Z.(2020).Landslide susceptibility prediction based on remote sensing images and GIS: Comparisons of supervised and unsupervised machine learning models.Remote Sensing,12(3),502.
  5. Crovelli, R. A.(2000).Probability models for estimation of number and costs of landslides.U.S. Geological Survey,25,0–3048.
  6. Dai, F. C.,Lee, C. F.(2002).Landslide characteristics and slope instability modeling using GIS, Lantau Island, Hong Kong.Geomorphology,42(3-4),213-228.
  7. Dai, F. C.,Lee, C. F.,Ngai, Y. Y.(2002).Landslide risk assessment and management: an overview.Engineering Geology,64(1),65-87.
  8. De, R. J.,Bourgeois, J.,Bats, M.,Zwertvaegher, A.,Gelorini, V.,De, S. P.,Chu, W.,Antrop, M.,Crombé, P.(2013).Application of the topographic position index to heterogeneous landscapes.Geomorphology,186,39-49.
  9. Duncan, J. M.,Wright, S. G.(1980).The accuracy of equilibrium methods of slope stability analysis.Engineering Geology,16(1-2),5-17.
  10. Galli, M.,Ardizzone, F.,Cardinali, M.,Guzzetti, F.,Reichenbach, P.(2008).Comparing landslide inventory maps.Geomorphology,94(3-4),268-289.
  11. Görüm, T.(2019).Landslide recognition and mapping in a mixed forest environment from airborne LiDAR data.Engineering Geology,258(5),105155.
  12. Guth, P. L.(1995).Slope and aspects calculations on gridded digital elevation models: Examples from a geomorphometric toolbox for personal computers.Zeitschrift für Geomorphologie Supplementband,101,31-52.
  13. Guzzetti, F.,Mondini, A. C.,Cardinali, M.,Fiorucci, F.,Santangelo, M.,Chang, K. T.(2012).Landslide inventory maps: New tools for an old problem.Earth-Science Reviews,112(1-2),42-66.
  14. Han, J.(2001).Spatial clustering methods in data mining: A survey.Geographic Data Mining and Knowledge Discovery
  15. Hao, L.,Rajaneesh, A.,Van Westen, C.,Sajinkumar, K. S.,Martha, T. R.,Jaiswal, P.,McAdoo, B. G.(2020).Constructing a complete landslide inventory dataset for the 2018 monsoon disaster in Kerala, India, for land use change analysis.Earth System Science Data,12(4),2899-2918.
  16. Lai, J. S.(2020).Separating landslide source and runout signatures with topographic attributes and data mining to increase the quality of landslide inventory.Applied Sciences,10(19),6652.
  17. Lai, J. S.(2018).Department of Civil Engineering, National Central University.
  18. Lai, J. S.,Chiang, S. H.,Tsai, F.(2019).Exploring influence of sampling strategies on event-based landslide susceptibility modeling.ISPRS International Journal of Geo-Information,8(9),397.
  19. Lissak, C.,Bartsch, A.,Michele, M.,Gomez, C.,Maquaire, O.,Raucoules, D.,Roulland, T.(2020).Remote sensing for assessing landslides and associated hazards.Surveys in Geophysics,41(6),1391-1435.
  20. Liu, C. C.(2015).Preparing a landslide and shadow inventory map from high-spatial-resolution imagery facilitated by an expert system.Journal of Applied Remote Sensing,9(1),096080.
  21. Lu, P.,Shibiao, B.,Nicola C.(2015).Spatial relationships between landslide occurrences and land cover across the Arno river basin (Italy).Environmental Earth Sciences,74(7),5541-5555.
  22. MacQueen, J.(1967).Some methods for classification and analysis of multivariate observations.Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability
  23. Moore, I. D.,Grayson, R. B.,Ladson, A. R.(1991).Digital terrain modelling: A review of hydrological, geomorphological, and biological applications.Hydrological Processes,5(1),3-30.
  24. Polykretis, C.,Ferentinou, M.,Chalkias, C.(2015).A comparative study of landslide susceptibility mapping using landslide susceptibility index and artificial neural networks in the Krios River and Krathis River catchments (northern Peloponnesus, Greece).Bulletin of Engineering Geology and the Environment,74(1),27-45.
  25. Raaflaub, L. D.,Collins, M. J.(2006).The effect of error in gridded digital elevation models on the estimation of topographic parameters.Environmental Modelling & Software,21(5),710-732.
  26. Reily, S. J.,DeGloria, S. D.,Elliot, R. A.(1999).Terrain ruggedness index that quantifies topographic heterogeneity.Intermountain. Journal of Science,5(1-4),23-27.
  27. Różycka, M.,Migoń, P.,Michniewicz, A.(2017).Topographic Wetness Index and Terrain Ruggedness Index in geomorphic characterisation of landslide terrains, on examples from the Sudetes, SW Poland.Zeitschrift Für Geomorphologie, Supplementary Issues,61,61-80.
  28. Saleem, N.,Huq, M.,Twumasi, N. Y. D.,Javed, A.,Sajjad, A.(2019).Parameters derived from and/or used with digital elevation models (DEMs) for landslide susceptibility mapping and landslide risk assessment: a review.ISPRS International Journal of Geo-Information,8(12),545.
  29. Shinoda, M.,Yoshihisa, M.(2019).PSO-based stability analysis of unreinforced and reinforced soil slopes using non–circular slip surface.Acta Geotechnica,14(3),907-919.
  30. Steger, S.,Brenning, A.,Bell, R.,Glade, T.(2016).The propagation of inventory-based positional errors into statistical landslide susceptibility models.Natural Hazards and Earth System Sciences,16(12),2729-2745.
  31. Tan, P. N.,Steinbach, M.,Kumar, V.(2006).Introduction to Data Mining.USA:Addison Wesley.
  32. Wang, H.,Zhang, L.,Yin, K.,Luo, H.,Li, J.(2021).Landslide identification using machine learning.Geoscience Frontiers,12(1),351-364.
  33. Weiss, A.(2001).Topographic position and landforms analysis.ESRI User Conference,San Diego, CA:
  34. Wilson, J. P.,Gallant, J. C.(2000).Terrain Analysis: Principles and Applications.Los Angeles:John Wiley & Sons.
  35. Wilson, M. F.,O’Connell, B.,Brown, C.,Guinan, J. C.,Grehan, A. J.(2007).Multiscale terrain analysis of multibeam bathymetry data for habitat mapping on the continental slope.Marine Geodesy,30(1-2),3-35.
  36. Xu, Chong(2015).Preparation of earthquake-triggered landslide inventory maps using remote sensing and GIS technologies: Principles and case studies.Geoscience Frontiers,6(6),825-836.
  37. Youssef, A. M.,Pourghasemi, H. R.(2021).Landslide susceptibility mapping using machine learning algorithms and comparison of their performance at Abha Basin, Asir Region, Saudi Arabia.Geoscience Frontiers,12(2),639-655.
  38. Yu, B.,Chen, F.,Xu, C.(2020).Landslide detection based on contour-based deep learning framework in case of national scale of Nepal in 2015.Computers & Geosciences,135,104388.
  39. Zevenbergen, L. W.,Thorne, C. R.(1987).Quantitative analysis of land surface topography.Earth Surface Processes and Landforms,12(1),47-56.
  40. 內政部消防署,莫拉克颱風災害應變處置報告第 72 報(2009)。