题名

創新壓-拉桿模型與直接拉伸試驗對超高性能混凝土拉伸特性之試驗分析

并列篇名

CHARACTERIZATION OF THE TENSILE PROPERTIES OF ULTRA-HIGH PERFORMANCE CONCRETE UTILIZING THE INNOVATIVE STRUT-AND-TIE MODEL AND DIRECT TENSILE TEST

DOI

10.6652/JoCICHE.202203_34(1).0001

作者

賴怡君(Yi-Chun Lai);李明輝(Ming-Hui Lee);戴毓修(Yuh-Shiou Tai)

关键词

超高性能混凝土 ; 鋼纖維 ; 拉伸性能 ; 壓拉桿模型 ; ultra-high performance concrete ; tensile properties ; steel fiber ; strut-and-tie model

期刊名称

中國土木水利工程學刊

卷期/出版年月

34卷1期(2022 / 03 / 01)

页次

1 - 10

内容语文

繁體中文

中文摘要

超高性能混凝土(ultra-high performance concrete, UHPC)是一種新興的混凝土材料。除了具有超過150 MPa的抗壓強度與出色的耐久性,其添加鋼纖維之後的拉伸性能和彎曲強度亦受到矚目。本研究採用創新之壓-拉桿拉伸試驗與直接拉伸試驗獲得UHPC在不同鋼纖維強化下的應力-應變行為,實驗結果顯示,兩種試驗方法在控制良好的條件下均能呈現應變硬化特徵。同時,試驗可獲得穩定且一致性之實驗數據。在UHPC的性質方面,本研究設計了三種不同鋼纖維含量之UHPC,除了比較試驗方法的差異之外,也探討鋼纖維體積比對UHPC拉伸性質,如初始開裂強度、峰值強度、應變能力與消能性質的影響。

英文摘要

Ultra-high performance concrete (UHPC) is an emerging concrete material. In addition to its compressive strength of more than 150 MPa and excellent durability, its tensile properties, and flexural strength after adding steel fibers have also attracted attention. In order to obtain the characteristic of tensile mechanical behavior, this study uses innovative strut-and-tie model and direct tensile tests to obtain the stress-strain behavior of UHPC under different steel fiber reinforcements. The experimental results show that both test schemes can exhibit strain hardening features under well-controlled conditions. At the same time, both test schemes can obtain stable and consistent results. In terms of the properties of UHPC, this study designed three UHPCs with different steel fiber volume fractions, in addition to comparing the differences in test methods, the effect of steel fiber volume ratio on UHPC tensile properties, such as initial cracking strength, post-peak strength, strain capacity, and The influence of energy-absorbing properties.

主题分类 工程學 > 土木與建築工程
工程學 > 水利工程
工程學 > 市政與環境工程
参考文献
  1. (2020).ASTM C1437-20, "Standard test method for flow of hydraulic cement mortar,".West Conshohocken, PA:ASTM International.
  2. (2021).ASTM C109/C109M-20b, "Standard test method for compressive strength of hydraulic cement mortars (Using 2-in. or [50 mm] Cube Specimens),".West Conshohocken, PA:ASTM International.
  3. (2016).ASTM A820/A820M-16, "Standard specification for steel fibers for fiber-reinforced concrete,".West Conshohocken, PA:ASTM International.
  4. ACI(2018).Ultra-High-Performance Concrete: An Emerging Technology Report.Farmington Hills, MI:American Concrete Institute.
  5. AFGC(2002).Ultra High Performance Fibre-Reinforced. Documents scientifiques et techniques.Association Française de Génie Civil=AFGC.
  6. Baby, F.,Graybeal, B.,Marchand, P.,Toutlemonde, F.(2013).Flexural tension tests methods for determination of the tensile stress-strain response of Ultra-High Performance Fibre Reinforced Concrete.Proceedings of the 8th International Conference on Fracture Mechanics of Concrete and Concrete Structures,TOLEDO, Spain:
  7. Bažant, Z. P.(1996).Analysis of work-of-fracture method for measuring fracture energy of concrete.Journal of Engineering Mechanics, ASCE,122(2),138-144.
  8. Gao, J.,Sun, W.,Morino, K.(1997).Mechanical properties of steel fiber-reinforced, high-strength, lightweight concrete.Cement and Concrete Composites,19(4),307-313.
  9. Goaiz, H. A.,Yu, T.,Hadi, M.(2018).Quality Evaluation Tests for Tensile Strength of Reactive Powder Concrete.Journal of Materials in Civil Engineering,30(5),04018070.
  10. Hung, C. C.,Chen, Y-T.,Yen, C-H.(2020).Workability, fiber distribution, and mechanical properties of UHPC with hooked end steel macro-fibers.Construction and Building Materials,260(10),119944.1-119944.12.
  11. Hung, C. C.,El-Tawil, S.,Chao, S.-H.(2021).A Review of Developments and Challenges for UHPC in Structural Engineering: Behavior, Analysis, and Design.Journal of Structural Engineering,147(9),03121001.
  12. Hung, C. C.,Hsieh, P. L.(2020).Comparative study on shear failure behavior of squat high-strength steel reinforced concrete shear walls with various high-strength concrete materials.Structures,23,56-68.
  13. Hussein, L.,Amleh, L.(2015).Structural behavior of ultrahigh performance fiber reinforced concrete-normal strength concrete or high strength concrete composite members.Construction and Building Materials,93(15),1105-1116.
  14. JSCE(2008).Recommendations for design and construction of high performance fiber reinforced cement composites with multiple fine cracks (HPFRCC).Japan Society of Civil Engineers=JSCE.
  15. Kang, S. H.,Lee, J. H.,Hong, S. G.,Moon, J.(2017).Microstructural investigation of heat-treated ultra-high performance concrete for optimum production.Materials,10(9),1106.
  16. Khayat, K. H.,Meng, W.,Vallurupalli, K.,Tenga, L.(2019).Rheological properties of ultra-high-performance concrete-An overview.Cement and Concrete Research,124,105828.
  17. Kusumawardaningsih, Y.,Fehlinga, E.,Ismail, M.,Aboubakr, A. A. M.(2015).Tensile strength behavior of UHPC and UHPFRC.Procedia Engineering,125(156),1081-1086.
  18. Le, A. H.(2020).Evaluation of the Splitting Tensile Strength of Ultra-High Performance Concrete.RILEM-fib International Symposium on Fibre Reinforced Concrete,30(102),1149-1160.
  19. Liao, W. C.,Chen, P. S.,Hung, C. W.,Wagh, S. K.(2020).An Innovative Test Method for Tensile Strength of Concrete by Applying the Strut-and-Tie Methodology.Materials,13(12),27760.
  20. Liu, Z.,Sherif, E. T.,Hansen, W.,Wang, F.(2018).Effect of slag cement on the properties of ultra-high performance concrete.Construction and Building Materials,190(30),830-837.
  21. Magureanu, C.,Sosa, I.,Negrutiu, C.,Heghes, B.(2010).Bending and shear behavior of ultra-high performance fiber reinforced concrete.High Perform Struct Mater V,112,79-89.
  22. Martinie, L.,Rossi, P.,Roussel, N.(2010).Rheology of fiber reinforced cementitious materials: Classification and prediction.Cement and Concrete Research,40(2),226-234.
  23. Meng, W.,Kamal, H. K.(2017).Improving flexural performance of ultra-high-performance concrete by rheology control of suspending mortar.Composites Part B: Engineering,117(4),26-34.
  24. Naaman, A. E.(2008).High performance fiber reinforced cement composites.High-performance construction materials,1(3),91-153.
  25. Naaman, A. E.,Reinhardt, H. W.(2003).Setting the stage: Toward performance based classification of FRC composites.High Performance Fiber Reinforced Cement Composites (HPFRCC 4), RILEM Workshop
  26. Resan, S. F.,Chassib, S. M.,Zemam, S. K.,Madhi, M. J.(2020).New approach of concrete tensile strength test.Case Studies in Construction Materials,12,e00347.
  27. Richard, P.,Cheyrezy, M.(1995).Composition of reactive powder concretes.Cement and Concrete Research,25(7),1501-1511.
  28. Richard, P.,Cheyrezy, M. H.(1994).Reactive powder concretes with high ductility and 200-800 MPa compressive strength.Special Publication,144(24),507-518.
  29. Sarfarazi, V.,Faridi, H. R.,Haeri, H.,Schubert, W.(2015).A new approach for measurement of anisotropic tensile strength of concrete.Advances in Concrete Construction,3(4),269-284.
  30. Sarfarazi, V.,Ghazvinian, A.,Schubert, W.,Nejati, H. R.,Hadei, R.(2016).A new approach for measurement of tensile strength of concrete.Periodica Polytechnica Civil Engineering,60(2),199-203.
  31. Schachinger, I.,Hilbig, H.,Stengel, T.,Fehling, E.(2008).Effect of curing temperature at an early age on the long-term strength development of UHPC.Proceedings of The 2nd International Symposium on Ultra High Performance Concrete,Kassel, Germany:
  32. Sherif, E. T.,Tai, Y. S.,Belcher, J. A., II,Rogers, D.(2020).Open-recipe ultra-high-performance concrete.Concrete International,42(6),33-38.
  33. Shin, W.,Doo, Y. Y.(2020).Influence of steel fibers corroded through multiple microcracks on the tensile behavior of ultra-high-performance concrete.Construction and Building Materials,259(120428),1-16.
  34. Tai, Y. S.(2009).Uniaxial compression tests at various loading rates for reactive powder concrete.Theoretical and Applied Fracture Mechanics,52(1),14-21.
  35. Tai, Y. S.,Sherif, E. T.(2017).High loading-rate pullout behavior of inclined deformed steel fibers embedded in ultra-high performance concrete.Construction and Building Materials,148(20),204-218.
  36. Tai, Y. S.,Sherif, E. T.(2020).Effect of component materials and mixing protocol on the short-term performance of generic ultra-high-performance concrete.Construction and Building Materials,238(30),117703.
  37. Wille, K.,Naaman, A. E.,Sherif, E. T.,Gustavo, J.P.M.(2012).Ultra-high performance concrete and fiber reinforced concrete: Achieving strength and ductility without heat curing.Materials and Structures,45(3),309-324.
  38. Wille, K.,Sherif, E. T.,Naaman, E. A.(2014).Properties of strain hardening ultra high performance fiber reinforced concrete (UHP-FRC) under direct tensile loading.Cement and Concrete Composites,48(8),53-66.
  39. Xu, M.,Wille, K.(2015).Fracture energy of UHP-FRC under direct tensile loading applied at low strain rates.Composites Part B: Engineering,80(15),116-125.
  40. Yoo, D. Y.,Yoon, Y. S.,Banthia, N.(2015).Flexural response of steel-fiber-reinforced concrete beams: Effects of strength, fiber content, and strain-rate.Cement and Concrete Composites,64(8),84-92.
  41. Zhidong, Z.,Pizhong, Q.(2019).Tensile behavior of ultra-high performance concrete: Analytical model and experimental validation.Construction and Building Materials,201(11),842-851.
  42. Zhou, Z.,Qiao, P.(2019).Tensile behavior of ultra-high performance concrete: Analytical model and experimental validation.Construction and Building Materials,201(11),842-851.