题名

以電弧爐氧化碴作為燒製環保水泥原料之可行性研究

并列篇名

FEASIBILITY STUDY OF DEVELOPING ECO-CEMENT USING ELECTRIC ARC FURNACE OXIDIZING SLAG AS THE RAW MATERIAL

DOI

10.6652/JoCICHE.202203_34(1).0003

作者

王韡蒨(Wei-Chien Wang);張高豪(Kao-Hao Chang);薛家晨(Jia-Chen Xue);李明君(Ming-Gin Lee);林政勳(Cheng-Hsun Lin)

关键词

環保水泥 ; 電弧爐氧化碴 ; 水泥生料 ; 水泥製程 ; eco-cement ; electric arc furnace oxidizing slag ; cement raw meal ; cement process

期刊名称

中國土木水利工程學刊

卷期/出版年月

34卷1期(2022 / 03 / 01)

页次

21 - 29

内容语文

繁體中文

中文摘要

全球水泥產量連年增加,但水泥之生產將消耗大量不可再生資源;而電弧爐氧化碴(EAFOS)為電弧爐煉鋼之副產物,目前對於EAFOS之其再利用量遠不及其產生量;因此,本研究嘗試將EAFOS以20%、60%及100%之比例取代原料中之鐵質來源燒製環保水泥,並對煅燒後之水泥熟料進行物理性質、成分分析以及硬固性質之測試,探討將EAFOS用以環保水泥燒製之可行性,期以此減少水泥製造所導致之資源損耗的同時增加EAFOS之再利用渠道。通過研究發現,EAFOS的加入可使其細度下降1.1%~4.0%,但對水泥熟料之比重及含鹼量影響較小,而熟料之水泥係數與f-CaO含量則除全取代(100%)外皆可符合標準範圍,加入EAFOS整體上可使熟料中C_3S含量增加,其與細度之共同作用可使高比例取代時之凝結時間得到明顯縮短;此外,EAFOS可使砂漿之28天強度提升1.22~1.27倍,且對乾燥收縮影響較小。根據試驗結果,EAFOS作爲水泥原料具有可行性,以本研究使用之EAFOS,其取代比例在60%以內所製作之環保水泥對其性質影響較小。

英文摘要

Nowadays, the consumption of cement still increases significantly as surging demand arises from construction activities in the world with the depletion of many non-renewable resources and the emission of global carbon dioxide. Electric Arc Furnace Oxidizing Slag (EAFOS) is a by-product of Electric arc furnace steelmaking. In industrial consumption, the reuse of EAFOS is far less than its production. Therefore, this research is intended to replace the iron source of raw materials with EAFOS by 20%, 60%, and 100% of weight respectively to manufacture an environment-friendly cement. Besides, by examining the physical properties, composition analysis, and hardened properties test of the cement clinker after calcination, this research explores the feasibility of using EAFOS to develop an eco-cement. This research not only aims to reduce the resource loss caused by cement manufacturing but also aims to increase the reuse of EAFOS. Experiments results show that the addition of EAFOS can reduce the fineness of clinker by 1.1% ~ 4.0%, but has little influence on the specific gravity and alkali content of cement clinker. Besides, the cement coefficient and f-CaO content of clinker can be acceptable to the standard range except for the 100% iron replacement sample. Adding EAFOS can increase the content of C_3S in the clinker. The condensation time can be shortened by the increasing of fineness due to high proportion EAFOS replacement. In addition, EAFOS can increase the strength of mortar by 22% to 27% at 28 days with little effect on drying shrinkage. From the test results, it can be concluded that EAFOS is as feasible as a cement raw material and has less of an impact on the performance of eco-cement when used as a 60% iron substitute.

主题分类 工程學 > 土木與建築工程
工程學 > 水利工程
工程學 > 市政與環境工程
参考文献
  1. 鄭瑞濱,江世哲(2019)。鋼鐵爐碴應用為水泥生料的實踐。土木水利,46(5),14-19。
    連結:
  2. 中聯資源股份有限公司: https://www.chc.com.tw/source.html
  3. Alp, İ.,Deveci, H.,Süngün, H.(2008).Utilization of flotation wastes of copper slag as raw material in cement production.Journal of Hazardous Materials,159(2-3),390-395.
  4. Ampadu, K. O.,Torii, K.(2001).Characterization of ecocement pastes and mortars produced from incinerated ashes.Cement and Concrete Research,31(3),431-436.
  5. Arribas, I.,Santamaría, A.,Ruiz, E.,Ortega-López, V.,Manso, J. M.(2015).Electric arc furnace slag and its use in hydraulic concrete.Construction and Building Materials,90,68-79.
  6. Bureau of International Recycling, “World steel recycling in figures 2015-2019,” Bir Global Facts & Figures. 11TH Edition (2020).
  7. Duda, W.H.,楊樹人(譯述)(1978).最新水泥製造學.中外圖書.
  8. Espinosa, D. C. R.,Tenorio, J. A. S.(2000).Laboratory study of galvanic sludge’s Influence on the clinkerization process.Resources Conservation and Recycling,31,71-82.
  9. Iacobescu, R. I.,Angelopoulos, G. N.,Jones, P. T.,Blanpain, B.,Pontikes, Y.(2016).Ladle metallurgy stainless steel slag as a raw material in Ordinary Portland Cement production: a possibility for industrial symbiosis.Journal of Cleaner Production,112,872-881.
  10. Iacobescu, R. I.,Koumpouri, D.,Pontikes, Y.,Saban, R.,Angelopoulos, G. N.(2011).Valorisation of electric arc furnace steel slag as raw material for low energy belite cements.Journal of Hazardous Materials,196,287-294.
  11. Liao, J. L.,Zhang, Z. H.,Ju, J. T.,Zhao, F. C.(2013).Comparative analysis of steel slag characteristics and treatment process.Advanced Materials Research,834-836,378-384.
  12. Moura, W. A.,Gonçalves, J. P.,Lima, M. B. L.(2007).Copper slag waste as a supplementary cementing material to concrete.Journal of Materials Science,42(7),2226-2230.
  13. Pan, S. Y.,Adhikari, R.,Chen, Y. H.,Li, P.,Chiang, P. C.(2016).Integrated and innovative steel slag utilization for iron reclamation, green material production and CO2 fixation via accelerated carbonation.Journal of Cleaner Production,137,617-631.
  14. Santamaria, A.,Faleschini, F.,Giacomello, G.,Brunelli, K.,José, J. T. S.,Pellegrino, C.,Pasetto, M.(2018).Dimensional stability of electric arc furnace slag in civil engineering applications.Journal of Cleaner Production,205,599-609.
  15. Sarfo, P.,Das, A.,Wyss, G.,Young, C.(2017).Recovery of metal values from copper slag and reuse of residual secondary slag.Waste Management,70,272-281.
  16. Shang, D.,Wang, M.,Xia, Z.,Hu, S.,Wang, F.(2017).Incorporation mechanism of titanium in Portland cement clinker and its effects on hydration properties.Construction and Building Materials,146,344-349.
  17. Torii, K.,Tomotake, H.,Osafo, A. K.,Echigo, T.(2003).Compatibility between ecocement produced from incinerator ash and reactive aggregates in ASR expansion of mortars.Cement and Concrete Research,33(4),571-577.
  18. Tsakiridis, P. E.,Papadimitriou, G. D.,Tsivilis, S.,Koroneos, C.(2008).Utilization of steel slag for Portland cement clinker production.Journal of Hazardous Materials,152,805-811.
  19. U.S. Geological Survey(2018).Mineral commodity summaries 2018.Reston, VA, USA:U.S. Geological Survey.
  20. Wang, G.,Wang, Y.,Gao, Z.(2010).Use of steel slag as a granular material: Volume expansion prediction and usability criteria.Journal of Hazardous Materials,184(1-3),555-560.
  21. Wu, Q. S.,Wu, Y.,Tong, W. H.,Ma, H. G.(2018).Utilization of nickel slag as raw material in The production of Portland cement for road construction.Construction and Building Materials,193,426-434.
  22. Yu, S.,Zhang, B.,Wei, J.,Zhang, T.,Yu, Q.,Zhang, W.(2017).Effects of chlorine on the volatilization of heavy metals during the co-combustion of sewage sludge.Waste Management,62,204-210.
  23. 毛云杰(2019)。桃園,中原大學土木工程學系。
  24. 王年福(2003)。國立中央大學土木工程研究所。
  25. 台灣鋼鐵工業同業公會(2017).電弧爐煉鋼氧化碴(石)應用於道路級配粒料基底層試行使用手冊.
  26. 刑金池(2004)。臺北,臺北科技大學材料及資源工程系。
  27. 林佑偉(2019)。桃園,中原大學土木工程學系。
  28. 林政勳(2017)。中原大學土木工程學系。
  29. 林凱隆,羅康維(2014)。還原碴做為水泥生料燒製環保水泥之研究。工業污染防治,128(91),91-113。
  30. 張津踐,錢曉倩,朱蓬萊,牛茂威,李志峰(2015)。利用污泥焚燒灰燒制矽酸鹽水泥熟料研究。非金屬礦,38(6),73-75+82。
  31. 龔人挾(1970).水泥化學概論.台灣區水泥工業同業公會.