题名

鹼激發銲渣膠結材之製作與性質

并列篇名

MANUFACTURING AND PROPERTIES OF ALKALI-ACTIVATED WELD-SLAG BINDERS

DOI

10.6652/JoCICHE.202203_34(1).0005

作者

林孟言(Meng-Yen Lin);黃忠信(Jong-Shin Huang)

关键词

銲渣 ; 鹼激發 ; 膠結材 ; 廢玻璃粉末 ; weld slag ; alkali-activation ; binder ; waste glass powder

期刊名称

中國土木水利工程學刊

卷期/出版年月

34卷1期(2022 / 03 / 01)

页次

41 - 52

内容语文

繁體中文

中文摘要

為提供銲渣之材料資源化再利用,同時,取代高耗能及高二氧化碳排放量製程之卜特蘭水泥,將不同配比設計之銲渣與廢玻璃粉末混合,利用一高溫拌合之特殊製程,製作鹼激發銲渣膠結材。藉由一系列試驗量測與分析比較,探討鹼激發銲渣膠結材之體積膨脹與最佳拌合製程,經由改變銲渣取代率、鹼活化劑中之鹼當量與水膠比、銲渣粉末細度及高溫養護條件等,獲得體積穩定且抗壓強度高之最佳配比設計。試驗結果發現,最佳拌合製程與配比設計所製成鹼激發銲渣膠結材,經適當高溫養護後抗壓強度可高達49 MPa,因此,鹼激發銲渣膠結材可取代卜特蘭水泥漿體製成新型營建材料。

英文摘要

Weld slag can be utilized as the raw material in the production of alkali-activated binder for the replacement of Portland cement to reduce energy cost and carbon dioxide emission. In the study, weld slags were first ground and then mixed with different amounts of waste glass powders and various activators to make alkali-activated weld-slag binders under a high temperature manufacturing process. By conducting a series of tests, the effects of weld-slag replacement percentage, alkaline equivalent content and water/binder ratio of activator, fineness of weld-slag powders and curing temperature on the volumetric expansion and compressive strength of alkali-activated weld-slag binders were evaluated. As a result, the optimal mixing process, mixture design and curing temperature for making the specimens with volumetric stability and high compressive strength were proposed. It is found that the compressive strength of the alkali-activated weld-slag binders made under the optimal conditions can reach up to 49 MPa. Hence, the alkali-activated weld-slag binder can replace Portland cement paste as a novel construction material.

主题分类 工程學 > 土木與建築工程
工程學 > 水利工程
工程學 > 市政與環境工程
参考文献
  1. 行政院環境保護署事業廢棄物申報及管理資訊系統https://waste.epa.gov.tw/RWD/Statistics/?page=Year2(2022).
  2. Ananthi, A.,Karthikeyan, J.(2017).Combined performance of polypropylene fibre and weld slag in high performance concrete.Journal of the Institution of Engineers (India): Series A,98(4),405-412.
  3. Ananthi, A.,Karthikeyan, J.(2015).Properties of industrial slag as fine aggregate in concrete.International Journal of Engineering and Technology Innovation,5(2),132-140.
  4. Beck, H. P.,Jackson, A. R.(1996).Recycling SAW slag proves reliable and repeatable.Welding Journal,75(6),51-54.
  5. Buchwald, A.,Schulz, M.(2005).Alkali-activated binders by use of industrial by-products.Cement and Concrete Research,35(5),968-973.
  6. Chen, J. H.,Huang, J. S.,Chang, Y. W.(2011).Use of reservoir sludge as a partial replacement of metakaolin in the production of geopolymers.Cement and Concrete Composites,33(5),602-610.
  7. Chen, J. H.,Huang, J. S.,Chang, Y. W.(2009).A preliminary study of reservoir sludge as a raw material of inorganic polymers.Construction and Building Materials,23(10),3264-3269.
  8. Chen, T. A.,Chen, J. H.,Huang, J. S.(2017).Effects of activator and aging process on the compressive strengths of alkali-activated glass inorganic binders.Cement and Concrete Composites,76,1-12.
  9. Cheng, T. W.,Chiu, J. P.(2003).Fire-resistant geopolymer produced by granulated blast furnace slag.Mineral Engineering,16(3),205-210.
  10. Chindaprasirt, P.,Chareerat, T.,Sirivivatnanon, V.(2007).Workability and strength of coarse high calcium fly ash geopolymer.Cement and Concrete Composites,29(3),224-229.
  11. Datta, S.,Bandyopadhyay, A.,Pal, P. K.(2008).Solving multi-criteria optimization problem in submerged arc welding consuming a mixture of fresh flux and fused slag.The International Journal of Advanced Manufacturing Technology,35(9-10),935-942.
  12. Granizo, M. L.,Blanco-Varela, M. T.,Palomo, A.(2000).Influence of the starting kaolin on alkali-activated materials based on metakaolin. Study of the reaction parameters by isothermal conduction calorimetry.Journal of Material Science,35(24),6309-6315.
  13. Hu, S.,Wang, H.,Zhang, G.,Ding, Q.(2008).Bonding and abrasion resistance of geopolymeric repair material made with steel slag.Cement and Concrete Composites,30(3),239-244.
  14. Jayakumar, K.,Ananthi, A.(2014).Material properties of bottom ash and welding slag as fine aggregates in concrete.1st International Conference on Construction Materials and Structures,Johannesurg, SouthAfrica:
  15. Livshits, L. G.,Shiryaev, A. I.(1960).A new ceramic flux for hard facing.Welding Production,28-29.
  16. Morete, G. F.,da Rocha Paranhos, R. P.,França De Holanda, J. N.(2007).Utilisation of welding slag waste in ceramic materials for civil construction.Welding International,21(8),584-588.
  17. Morete, G. F.,Paranhos, R. P. R.,de Holanda, J. N. F.(2010).Processing and characterization of clay bricks incorporated with welding flux slag waste.Industrial Ceramics,30(1),1-5.
  18. Palomo, A.,Blanco-Varela, M. T.,Granizo, M. L.,Puertas, F.,Vazquez, T.,Grutzeck, M. W.(1999).Chemical stability of cementitious materials based on metakaolin.Cement and. Concrete Research,29(7),997-1004.
  19. Palomo, A.,Grutzeck, M. W.,Blanco, M. T.(1999).Alkali-activated fly ashes: A cement for the future.Cement and Concrete Research,29(8),1323-1329.
  20. Paranthaman, P.,Gopal, P. M.,Sathiesh, K. N.(2019).Characterization of Economical Aluminium MMC Reinforced with Weld Slag Particles.Advances in Manufacturing Technology,Singapore:
  21. Ravikumar, D.,Peethamparan, S.,Neithalath, N.(2010).Structure and strength of NaOH activated concretes containing fly ash or GGBFS as the sole binder.Cement and Concrete Composites,32(6),399-410.
  22. Singh, K.,Pandey, S.(2009).Recycling of slag to act as a flux in submerged arc welding. Resources.Conservation and Recycling,53(10),552-558.
  23. Tuliani, S. S.,Boniszewski, T.,Eaton, N. F.(1969).Notch toughness of commercial submerged arc weld metal.Welding and Metal Fabrication,37(8),327-339.
  24. van Jaarsveld, J. G. S.,van Deventer, J. S. J.,Lukey, G. C.(2003).The characterisation of source materials in fly ash-based geopolymers.Material Letters,57(7),1272-1280.
  25. Viana, C. E.,Dias, D. P.,de Holanda, J. N. F.,Paranhos, R. P. R.(2009).The use of submerged-arc welding flux slag as raw material for the fabrication of multiple-use mortars and bricks.Soldagem & Inspeção,14(3),257-262.
  26. 林孟佑(2016)。台南,國立成功大學土木工程研究所。
  27. 林孟言,黃忠信(2022)。林孟言,黃忠信,「無機膠結材的製造方法及其所形成之固化物」,中華民國發明專利第 I761284 號 (2022)。
  28. 柯文弼(2022)。台南,國立成功大學土木工程研究所。
  29. 陳泰安(2016)。台南,國立成功大學土木工程學系。