题名

臺南都會區北外環道路-超高性能混凝土(UHPC)伸縮縫之國內首例應用

并列篇名

TAINAN URBAN ZONE NORTHERN OUTER RING ROAD: THE FIRST APPLICATION OF UHPC EXPANSION JOINTS IN TAIWAN

DOI

10.6652/JoCICHE.202203_34(1).0006

作者

洪崇展(Chung-Chan Hung);吳瑞安(Juian Wu);蔣啟恆(Jambo C.H. Chiang);陳明谷(Mingku Chen);吳秉益(Ping Yi Wu);顏誠皜(Cheng-Hao Yen)

关键词

都會區高架橋 ; 快速道路 ; 超高性能混凝土 ; 伸縮縫 ; expressway ; bridge engineering ; UHPC ; expansion joint

期刊名称

中國土木水利工程學刊

卷期/出版年月

34卷1期(2022 / 03 / 01)

页次

53 - 62

内容语文

繁體中文

中文摘要

臺南都會區北外環道路銜接臺南核心市區與臺南科學園區特定區,可有效紓解附近道路與台1省道的交通雍塞,透過北外環道路的完成,銜接了既有台39、台86等道路,可建構臺南市核心區外環快速道路系統,此外,配合預留未來增設國道一號系統交流道的可行性,提供核心市區快速進入國道之新路徑。本工程路線沿鹽水溪堤岸而行,主線為高架橋梁之快速道路,本工程完工後,將成為大臺南地區交通之新動脈。為提升工程之永續性,本工程率先於國內橋梁工程,採用超高性能混凝土(Ultra-High Performance Concrete,簡稱UHPC)取代傳統高強度無收縮混凝土用於伸縮縫中。所採用國內自主開發之超高性能混凝土,具超高抗壓與抗拉強度,其內含之纖維可有效強化受拉與受壓韌性,提升開裂強度與控制裂縫發展,並改善傳統高強度砂漿或傳統混凝土之脆性開裂與剝落問題。除此之外,UHPC相關的耐久性指標(孔隙率、滲透性、氯離子擴散率、抗磨蝕等)都較傳統混凝土與高強度砂漿優異,可降低修繕頻率,進而延長橋梁生命週期。本文除了探討使用國內自主開發的UHPC於伸縮縫之有效性,並進一步說明使用UHPC於伸縮縫之施工流程,以及介紹國內外UHPC之相關工程案。針對UHPC伸縮縫後續之監測,研究團隊成員將利用非破壞檢測,持續追蹤UHPC伸縮縫之力學與耐久性質,並與其他使用高強度無收縮混凝土之伸縮縫進行比較。

英文摘要

Ultra-High Performance Concrete (UHPC) is a fiber-reinforced cementitious material, which is known for its superior mechanical properties, durability, and workability. Due to the high particle-packing density and addition of fibers, UHPC has the ability to inhibit the crack formation and possesses high tensile strength and ductility. Given this, the common weakness of conventional concrete and high-strength cement mortar, including brittle behavior and spalling, is greatly alleviated by using UHPC. In addition, UHPC is more durable than conventional concrete and high-performance concrete owing to the low water-to-binder ratio, high particle-packing density, and crack-resistant ability. As a result, the durability measures, including porosity, permeability, chloride ion diffusivity, and abrasion resistance, are substantially lower than those of conventional concrete materials, which can protect structures from harmful substances. The construction of Tainan Urban Zone Northern Outer Ring Road links the core urban area of Tainan and Southern Taiwan Science Park, which will effectively mitigate the traffic congestion between nearby roads and No. 1 Provincial Road. The existing routes such as No. 39 Provincial Road and No. 86 Provincial Road will be connected by the North Outer Ring Road. As a result, the convenient outer ring expressway system in the core area of Tainan metropolitan will be realized. The route of this project runs along the embankment of the Yanshui River, and the mainline consists of the viaduct. After the completion of this project, it will become an essential path in the Tainan metropolitan. In the third phase of the project, the construction and design units applied UHPC for the expansion joints in several bridge sections. It aimed to compare with other expansion joints using conventional high-strength non-shrinkage concrete to understand the performance of UHPC. In addition to reporting the expected effectiveness of UHPC in the new expansion joints, the paper also introduces the construction processes of the UHPC expansion joints. For the potential follow-up monitoring, it is expected to use non-destructive testing methods to continuously examine the mechanics and durability of the UHPC expansion joints and compare the results with other expansion joints using conventional high-strength non-shrinkage cement mortar.

主题分类 工程學 > 土木與建築工程
工程學 > 水利工程
工程學 > 市政與環境工程
参考文献
  1. 洪崇展,郭家維,黃丞毅(2020)。超高性能纖維混凝土於非韌性柱包覆補強工法之有效性。中國土木水利工程學刊,32(8),693-699。
    連結:
  2. 洪崇展,戴艾珍,顏誠皜,溫國威,張庭維(2017)。新世代多功能性混凝土材料 ⎯ 高性能纖維混凝土。土木水利,44,33-51。
    連結:
  3. 袁宇秉,洪崇展,Li, Victor C.(2020)。應用高韌性纖維混凝土(ECC)邁向永續基礎設施工程。中國土木水利工程學刊,32(8),713-720。
    連結:
  4. (2016).「臺南都會區北外環道路第 3 期新建工程」基本設計報告書.
  5. Atmajayanti, A. T.,Hung, C.-C.,Yuen, T. Y.,Shih, R.-C.(2021).Influences of sodium lignosulfonate and high-volume fly ash on setting time and hardened state properties of engineered cementitious composites.Materials,14,4779.
  6. Bermudez, M.,Hung, C.(2021).Shear behavior of steel reinforced ultra high performance concrete members with hybrid fibers.EASEC16
  7. Bertola, N.,Schiltz, P.,Denarié, E.,Brühwiler, E.(2021).A review of the use of UHPFRC in bridge rehabilitation and new construction in switzerland.Frontiers in Built Environment,7,769686.
  8. Caner, A.(1998).Behavior and design of link slabs for jointless bridge decks.PCI Journal,43(3)
  9. Dean, N.,Stevens, C.,Hastings, J.(2019).Accelerated bridge construction methods for bridge 1-438 replacement.International Interactive Symposium on Ultra-High Performance Concrete
  10. Doiron, G.(2017).UHPC link slab solutions in North America.AFGC-ACI-fib-RILEM International Symposium on Ultra-High Performance Fibre-Reinforced Concrete
  11. Du, J.,Meng, W.,Khayat, K. H.,Bao, Y.,Guo, P.,Lyu, Z.,Abu-obeidah, A.,Nassif, H.,Wang, H.(2021).New development of ultra-high-performance concrete (UHPC).Composites Part B: Engineering,109220.
  12. Graybeal, B.(2009).UHPC making strides.Public Roads,72,17-21.
  13. Graybeal, B.(2014).,United States:Federal Highway Administration.
  14. Graybeal, B.,Brühwiler, E.,Kim, B.-S.,Toutlemonde, F.,Voo, Y. L.,Zaghi, A.(2020).International perspective on UHPC in bridge engineering.Journal of Bridge Engineering,25,04020094.
  15. Haikal, G.,Ramirez, J. A.,Jahanshahi, M. R.,Villamizar, S.,Abdelaleim, O.(2019).,未出版
  16. Hung, C.,Tseng, B.,You, W.,Huang, J.(2011).Effectiveness of using high performance fiber reinforced concrete in coupled structural walls for improving seismic performance.Structural Engineering, Chinese Society of Structural Engineering,26,3-16.
  17. Hung, C.,Wen, K.(2020).Investigation of shear strength of ultra-high performance concrete beams without stirrup.Proc, 17th World Conf on Earthquake Engineering, 17WCEE,Tokyo:
  18. Hung, C.-C.(2010).University of Michigan.
  19. Hung, C.-C.,Chen, Y.-S.(2016).Innovative ECC jacketing for retrofitting shear-deficient RC members.Construction and Building Materials,111,408-418.
  20. Hung, C.-C.,Chen, Y.-T.,Yen, C.-H.(2020).Workability, fiber distribution, and mechanical properties of UHPC with hooked end steel macro-fibers.Construction and Building Materials,260,119944.
  21. Hung, C.-C.,Chueh, C.-Y.(2016).Cyclic behavior of UHPFRC flexural members reinforced with high-strength steel rebar.Engineering Structures,122,108-120.
  22. Hung, C.-C.,El-Tawil, S.(2010).Seismic behavior of a coupled-wall system with HPFRCC coupling beams.Structures Congress
  23. Hung, C.-C.,El-Tawil, S.(2010).Hybrid rotating/fixed-crackmodel for high-performance fiber-reinforced cementitious composites.ACI Materials Journal,107
  24. Hung, C.-C.,El-Tawil, S.(2011).Seismic behavior of a coupled wall system with HPFRC materials in critical regions.Journal of Structural Engineering,137,1499-1507.
  25. Hung, C.-C.,El-Tawil, S.(2010).Cyclic model for high performance fiber reinforced cementitious composite structures.Improving the Seismic Performance of Existing Buildings and Other Structures
  26. Hung, C.-C.,El-Tawil, S.,Chao, S.-H.(2021).A review of developments and challenges for UHPC in structural engineering: Behavior, analysis, and design.Journal of Structural Engineering,147,03121001.
  27. Hung, C.-C.,Hsieh, P.-L.(2020).Comparative study on shear failure behavior of squat high-strength steel reinforced concrete shear walls with various high-strength concrete materials.Structures,23,56-68.
  28. Hung, C.-C.,Hu, F.-Y.(2018).Behavior of high-strength concrete slender columns strengthened with steel fibers under concentric axial loading.Construction and Building Materials,175,422-433.
  29. Hung, C.-C.,Hu, F.-Y.,Yen, C.-H.(2018).Behavior of slender UHPC columns under eccentric loading.Engineering Structures,174,701-711.
  30. Hung, C.-C.,Hung, H.-H.(2020).Potential of sodium sulfate solution for promoting the crack-healing performance for strain-hardening cementitious composites.Cement and Concrete Composites,106,103461.
  31. Hung, C.-C.,Kuo, C.-W.,Shao, Y.(2021).Cast-in-place and prefabricated UHPC jackets for retrofitting shear-deficient RC columns with different axial load levels.Journal of Building Engineering,44,103305.
  32. Hung, C.-C.,Lee, H.-S.,Chan, S. N.(2019).Tension-stiffening effect in steel-reinforced UHPC composites: constitutive model and effects of steel fibers, loading patterns, and rebar sizes.Composites Part B: Engineering,158,269-278.
  33. Hung, C.-C.,Li, H.,Chen, H.-C.(2017).High-strength steel reinforced squat UHPFRC shear walls: Cyclic behavior and design implications.Engineering Structures,141,59-74.
  34. Hung, C.-C.,Li, S.-H.(2013).Three-dimensional model for analysis of high performance fiber reinforced cement-based composites.Composites Part B: Engineering,45,1441-1447.
  35. Hung, C.-C.,Su, Y.-F.(2013).On modeling coupling beams incorporating strain-hardening cement-based composites.Computers and Concrete,12,565-583.
  36. Hung, C.-C.,Su, Y.-F.(2016).Medium-term self-healing evaluation of engineered cementitious composites with varying amounts of fly ash and exposure durations.Construction and Building Materials,118,194-203.
  37. Hung, C.-C.,Su, Y.-F.,Hung, H.-H.(2017).Impact of natural weathering on medium-term self-healing performance of fiber reinforced cementitious composites with intrinsic crack-width control capability.Cement and Concrete Composites,80,200-209.
  38. Hung, C.-C.,Su, Y.-F.,Su, Y.-M.(2018).Mechanical properties and self-healing evaluation of strain-hardening cementitious composites with high volumes of hybrid pozzolan materials.Composites Part B: Engineering,133,15-25.
  39. Hung, C.-C.,Su, Y.-F.,Yu, K.-H.(2013).Modeling The shear hysteretic response for high performance fiber reinforced cementitious composites.Construction and Building Materials,41,37-48.
  40. Hung, C.-C.,Yen, C.-H.(2021).Compressive behavior and strength model of reinforced UHPC short columns.Journal of Building Engineering,35,102103.
  41. Hung, C.-C.,Yen, W.-M.(2014).Experimental evaluation of ductile fiber reinforced cement-based composite beams incorporating shape memory alloy bars.Procedia Engineering,79,506-512.
  42. Hung, C.-C.,Yen, W.-M.,Yu, K.-H.(2016).Vulnerability and improvement of reinforced ECC flexural members under displacement reversals: Experimental investigation and computational analysis.Construction and Building Materials,107,287-298.
  43. Kennedy, D.,Habel, K.,Fraser, G.(2015).Ultra high-performance concrete column jacket retrofit for The mission bridge.11th Canadian Conference on Earthquake Engineering
  44. Li, J.,Wu, Z.,Shi, C.,Yuan, Q.,Zhang, Z.(2020).Durability of ultra-high performance concrete–A review.Construction and Building Materials,255,119296.
  45. Mizukami, J.,Matsunaga, Y.(2016).Construction of d-runway at Tokyo international airport.Japanese Geotechnical Society Special Publication,2,122-134.
  46. Núñez, A.,Patiño, J.,Arango, S.,Echeverri, W.(2019).Review of first structural applications of UHPC in Colombia.International Interactive Symposium on Ultra-High Performance Concrete
  47. Ricciotti, R.,Pastor, F.,Hajar, Z.,Bernardi, S.(2017).La République Bridge in Montpellier.AFGC-ACI-fib-RILEM international conference on ultrahigh performance fibre-reinforced concrete UHPFRC
  48. Royce, M.(2016).Utilization of Ultra-High Performance Concrete (UHPC) in New York.International Interactive Symposium on Ultra-High Performance Concrete
  49. Shao, Y.,Hung, C.-C.,Billington, S. L.(2021).Gradual crushing of steel reinforced HPFRCC beams: Experiments and simulations.Journal of Structural Engineering,147,04021114.
  50. Shao, Y.,Kuo, C.-W.,Hung, C.-C.(2021).Seismic performance of full-scale UHPC-jacket-strengthened RC columns under high axial loads.Engineering Structures,243,112657.
  51. Shi, C.,Wu, Z.,Xiao, J.,Wang, D.,Huang, Z.,Fang, Z.(2015).A review on ultra high performance concrete: Part I. Raw materials and mixture design.Construction and Building Materials,101,741-751.
  52. Sparowitz, L.,Freytag, B.,Reichel, M.,Zimmermann, W.(2011).Wild bridge-a sustainable arch made of UHPFRC.Chinese-Croatian Joint Colloquium on Long Arch Bridges: SECON-CSSE
  53. Voo, Y. L.,Foster, S. J.(2010).Characteristics of ultra-high performance ‘ductile’concrete and its impact on sustainable construction.The IES Journal Part A: Civil & Structural Engineering,3,168-187.
  54. Wille, K.,Naaman, A. E.,Parra-Montesinos, G. J.(2011).Ultra-high performance concrete with compressive strength exceeding 150 MPa (22 ksi): A simpler way.ACI materials journal,108
  55. Xue, J.,Briseghella, B.,Huang, F.,Nuti, C.,Tabatabai, H.,Chen, B.(2020).Review of ultra-high performance concrete and its application in bridge engineering.Construction and Building Materials,260,119844.
  56. Yang, C.,Chen, S.-C.,Yen, C.-H.,Hung, C.-C.(2022).Behaviour and detailing of coupling beams with high-strength materials.Journal of Building Engineering,47,103843.
  57. Zhou, M.,Lu, W.,Song, J.,Lee, G. C.(2018).Application of ultra-high performance concrete in bridge engineering.Construction and Building Materials,186,1256-1267.