题名

NONLINEAR FORECASTING OF DAILY STREAMFLOW USING A CHAOTIC APPROACH

并列篇名

應用非線性混沌理論方法預測河川日平均流量之分析研究

DOI

10.6652/JoCICHE.202204_34(2).0005

作者

沈少文(Shaw Wen Sheen)

关键词

chaos theory ; local approximation method ; Nash-Sutcliffe efficiency ; persistence index ; 混沌理論 ; 局部漸進預測法 ; 納許效率係數 ; 持續指數

期刊名称

中國土木水利工程學刊

卷期/出版年月

34卷2期(2022 / 04 / 01)

页次

151 - 161

内容语文

英文

中文摘要

Streamflow process was complex and not easily predictable. This process was affected by a large number of parameters, such as precipitation, temperature, evapotranspiration, land use and was characterized by nonlinear relationship between streamflow and the characteristics of its watershed. The theory of chaos which deals with unpredictable complex nonlinear systems had its breakthrough in the past decades. The aim of this study was to employ chaos methods, including phase space reconstruction and local approximation method to examine the existence of chaos in streamflow dynamics. The major objective was to investigate and compare the prediction accuracy of daily streamflow time series from the gauging station in the northeastern Taiwan. The gauging station was at Lanyang River. The observed streamflow time series spanned a time period of 70 years from 1950 to 2019. The first 50-year streamflow data were used as the training data set, and the last 20-year were used as the testing data set. This study applied efficiency criteria: coefficient of variation, Nash-Sutcliffe efficiency, and persistence index. The results concluded that there was existence of chaos in streamflow dynamics. The values of coefficient of variation, Nash-Sutcliffe efficiency, and persistence index were 1.483, 0.498, and 0.266. respectively. During the rising period the values were 2.428, 0.444, and - 0.101, and during the recession period the values were 0.760, 0.652, and 0.723. The prediction accuracy performance was better in the recession period than in the rising period at the gauging station. Local approximation method was an effective model to predict daily streamflow time series at the gauging station used in this study.

英文摘要

河川作用不但是複雜的而且是難預測的系統,許多環境因子影響著河川作用,包括降水量、氣溫、蒸發散量及土地利用等因子,集水區特性與河川作用之間存在著非線性相關,本研究應用混沌理論方法分析臺灣東北部宜蘭地區河川日平均流量,本研究分析蘭陽溪蘭陽大橋測站70年(1950~2019)河川日平均流量資料,使用前50年(1950~1999)河川日平均流量資料來預測後20年(2000~2019)河川日平均流量,本研究使用變異係數、納許效率係數與持續指數來評估預測模型正確有效程度,研究地區流量測站河川日平均流量顯示有混沌現象,預測模型計算河川日平均流量變異係數為1.483、納許效率係數為0.498與持續指數為0.266,河川日平均流量上升段變異係數為2.428、納許效率係數為0.444與持續指數為-0.101,河川日平均流量退水段變異係數為0.760、納許效率係數為0.652與持續指數為0.723,預測模型於河川日平均流量退水段預測顯著較上升段佳,研究結論為局部漸進預測法能有效預測河川日平均流量。

主题分类 工程學 > 土木與建築工程
工程學 > 水利工程
工程學 > 市政與環境工程
参考文献
  1. Burt, J. E.,Barber, G. M.(1996).Elementary Statistics for Geographers.New York:Guilford.
  2. Crutchfield, J. P.,Farmer, J. D.,Packard, N. H.,Shaw, R. S.(1986).Chaos.Scientific American,244,46-57.
  3. Di, C.,Wang, T.,Istanbulluoglu, E.,Jayawardena, A.W.,Li, S.,Chen, X.(2019).Deterministic chaotic dynamics in soil moisture across Nebraska.Journal of Hydrology,578,1-12.
  4. Farmer, J. D.,Sidorowich, J. J.(1987).Predicting chaotic time series.Physical Review Letters,59,845-848.
  5. Islam, M. N.,Sivakumar, B.(2002).Characterization and prediction of runoff dynamics: a nonlinear dynamical view.Advances in Water Resources,25,179-190.
  6. Jayawardena, A. W.(1997).Runoff forecasting using a local approximation method.Destructive Water: Water-Caused Natural Disasters - Their Abatement and Control. IAHS, Oxford,Oxford:
  7. Jayawardena, A. W.,Gurung, A. B.(2000).Noise reduction and prediction of hydrometeorological time series: dynamical systems approach vs. stochastic approach.Journal of Hydrology,228,242-264.
  8. Jayawardena, A. W.,Lai, F.(1994).Analysis and prediction of chaos in rainfall and stream flow time series.Journal of Hydrology,153,23-52.
  9. Jayawardena, A. W.,Li, W. K.,Xu, P.(2002).Neighborhood selection for local modeling and prediction of hydrological time series.Journal of Hydrology,258,40-57.
  10. Kember, G.,Flower. A. C.,Holubeshen, J.(1993).Forecasting river flow using nonlinear dynamics.Stochastic Hydrology and Hydraulics,7,205-212.
  11. Khatibi, R.,Sivakumar, B.,Ghorbani, M. A.,Kisi, O.,Koçak, K.,Zadeh, D. F.(2012).Investigating chaos in river stage and discharge time series.Journal of Hydrology,414,108-117.
  12. Liu, Q.,Islam, S.,Rodriguez-Iturbe, I.,Le, Y.(1998).Phasespace analysis of daily streamflow: Characterization and prediction.Advances in Water Resources,21,463-475.
  13. Mehr, A. D.,Kahya, E.(2017).A Pareto-optimal moving average multigene genetic programming model for daily streamflow prediction.Journal of Hydrology,549,603-615.
  14. Phoon, K. K.,Islam. M. N.,Liaw, C. Y.,Liong, S. Y.(2002).Practical inverse approach for forecasting nonlinear hydrological time series.Journal of Hydrologic Engineering,7,116-128.
  15. Porporato, A.,Ridolfi, L.(1997).Nonlinear analysis of river flow time sequences.Water Resources Research,33,1353-1367.
  16. Porporato, A.,Ridolfi, L.(1996).Clues to the existence of deterministic chaos in river flow.International Journal of Modern Physics B,10,1821-1862.
  17. Porporato, A.,Ridolfi, L.(2001).Multivariate nonlinear prediction of river flows.Journal of Hydrology,248,109-122.
  18. Sivakumar, B.(2007).Nonlinear determinism in river flow: Prediction as a possible Indicator.Earth Surface Processes and Landforms,32,969-979.
  19. Sivakumar, B.(2009).Nonlinear dynamics and chaos in hydrologic systems: Latest developments and a look forward.Stochastic Environmental Research and Risk Assessment,23,1027-1036.
  20. Sivakumar, B.(2017).Chaos in Hydrology: Bridging Determinism and Stochasticity.Netherlands:Springer.
  21. Sivakumar, B.(2000).Chaos theory in hydrology: Important issues and interpretations.Journal of Hydrology,227,1-20.
  22. Sivakumar, B.,Berndtsson, R.,Persson, M.(2001).Monthly runoff prediction using phase-space reconstruction.Hydrological Sciences Journal,46,377-387.
  23. Sivakumar, B.,Jayawardena, A. W.,Fernando, T.M.K.G.(2002).River flow forecasting: use of phase-space reconstruction and artificial neural networks approaches.Journal of Hydrology,265,225-245.
  24. Sivakumar, B.,Jayawardena, A. W.,Li, W. K.(2007).Hydrologic complexity and classification: a simple data reconstruction approach.Hydrological Processes,21,2713-2728.
  25. Sivakumar, B.,Persson, M.,Berndtsson, R.,Uv, C. B.(2002).Is correlation dimension a reliable indicator of low-dimensional chaos in short hydrological time series?.Water Resources Research,38,3–1-3–8.
  26. Sugihara, G.,May, R. M.(1990).Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series.Nature,344,734-741.
  27. Tsonis, A. A.,Elsner, J. B.(1992).Nonlinear prediction as away of distinguishing chaos from random fractal sequences.Nature,358,217-220.