题名

以膨脹指數試驗探討混凝土孔隙溶液對膨潤土膨脹性能之影響

并列篇名

USING EXPANSION INDEX TO EXPLORE THE EFFECT OF CONCRETE PORE SOLUTION ON SWELLING PROPERTY OF BENTONITE

DOI

10.6652/JoCICHE.202204_34(2).0007

作者

王韡蒨(Wei Chien Wang);薛家晨(Jia Chen Xue);黃偉慶(Wei Hsing Huang);李銘育(Ming Yu Lee);李育泱(Yu Yang Li)

关键词

低鹼性混凝土 ; 膨潤土 ; 膨脹能力 ; pH值 ; low-pH concrete ; bentonite ; swelling capacity ; pH value

期刊名称

中國土木水利工程學刊

卷期/出版年月

34卷2期(2022 / 04 / 01)

页次

175 - 183

内容语文

繁體中文

中文摘要

膨潤土(bentonite)具有突出的吸水膨脹性及抗滲性能,因此被用於高放廢棄物最終處置場中作爲緩衝材料,可有效阻止放射性核種與外界接觸。現有研究顯示,若於處置場的構造物中使用混凝土材料,其高pH值的孔隙溶液會減損膨潤土之膨脹性能,進而影響處置場的安全。本研究提出一種簡單快速且易於控制環境因素之試驗程序及方法,以美國懷俄明州Black Hills地區所開採生產之Volclay Bentonite SPV 200(簡稱SPV 200)與MX-80膨潤土為樣本,提取真實混凝土孔隙溶液以評估不同混凝土孔隙溶液及環境溫度對膨潤土之膨脹性影響。試驗結果發現,所提出新的試驗方法及程序,其所呈現之膨脹指數與pH值變化趨勢可以快速有效的區分出混凝土孔隙溶液對膨潤土膨脹性之影響,當混凝土的孔隙溶液pH值與膨潤土接觸48小時後小於10,不會減損膨潤土的膨脹性能。具有高pH值(12.7)的混凝土孔隙溶液會降低膨潤土之膨脹性,而低pH值(10.6)的混凝土孔隙溶液,當其溫度在23°C~80°C範圍內,未對膨潤土之膨脹性產生影響。

英文摘要

Research shows that bentonite has a high swelling property and non-permeable behaviors. Thus, it is commonly used as a buffer material for the final disposal of high-level radioactive waste. This application can effectively prevent radioactive nuclides from contacting the outside environment. According to the research, using the concrete to be the structure in the disposal site will reduce the swelling of bentonite due to its high pH pore solution and influence the safety of disposal site. This study proposes a simple, fast and easy-to-control environmental factor test procedure and method. Using Volclay Bentonite SPV 200 and MX-80 bentonite produced in the Black Hills area of Wyoming, USA as samples, real concrete pore solutions were extracted to evaluate the influence of different concrete pore solutions and ambient temperature on the expansion of bentonite. The results showed that the new test method can help researchers evaluate the effect of concrete pore solution on the expansibility of bentonite quickly and effectively. The result also showed that when the pH value of the pore sulution and the bentonite interactions within 48 hours the pH value less 10, the swelling property of bentonite will not be reduced. Conversely, when the pH value of the pore solution is higher than 12.7, it will reduce the swellability of bentonite. Besides, when the pore solution with a low pH value (10.6), and its temperature is in the range of 23°C ~ 80°C, the swellability of bentonite will not be affected.

主题分类 工程學 > 土木與建築工程
工程學 > 水利工程
工程學 > 市政與環境工程
参考文献
  1. Alonso, M. C.,García Calvo, J. L.,Walker, C.,Naito, M.,Pettersson, S.,Puigdomenech, I.,Cuñado, M. A.,Vuorio, M.,Weber, H.,Ueda, H.,Fujisaki, K.(2012).,Sweden, Stockholm:.
  2. Alonso, M. C.,Garcia, J. L.,Hidalgo, A.,Fernández, L.(2010).Geological Repository Systems for Safe Disposal of Spent Nuclear Fuels and Radioactive WasteGeological Repository Systems for Safe Disposal of Spent Nuclear Fuels and Radioactive Waste,未出版
  3. ASTM(2018).Standard test method for swell index of clay mineral component of geosynthetic clay liners.West Conshohocken:American Society for Testing and Materials.
  4. Bauer, A.,Lanson, B.,Ferrage, E.,Emmerich, K.,Taubald, H.,Schild, D.,Velde, B.(2006).The fate of smectite in KOH solutions.American Mineralogist,91(8-9),1313-1322.
  5. Cau Dit Coumes, C.,Codina, M.,Bourbon, X.,Leclercq, S.,Courtois, S.(2005).Formulating a low-alkalinity, highresistance and low-heat concrete for radioactive waste repositories.R&D on Low-pH cement for a geological repository, second low-pH workshop,Madrid:
  6. Chen, Y. G.,Liu, L. N.,Ye, W. M.(2019).Deterioration of swelling pressure of compacted Gaomiaozi bentonite induced by heatcombined with hyperalkaline conditions.Soils and Foundations,59(6),2254-2264.
  7. Cui, Y. J.(2017).On the hydro-mechanical behaviour of MX80 bentonite-based materials.Journal of Rock Mechanics and Geotechnical Engineering,9(3),565-574.
  8. Cui, Y. J.,Tang, A. M.,Qian, L. X.,Ye, W. M.,Chen, B.(2011).Thermal-mechanical behavior of compacted GMZ Bentonite.Soils and Foundations,51(6),1065-1074.
  9. Fernández, R.,Cuevas, J.,Mäder, U. K.(2009).Modelling concrete interaction with a bentonite barrier.European Journal of Mineralogy,21(1),177-191.
  10. Garcia Calvo, J.L,Hidalgo, A.,Alonso, C.,Fernandez Luco, L.(2010).Development of low-pH cementitious materials for HLRW repositories Resistance against ground waters aggression.Cement and Concrete Research,40,1290-1297.
  11. González-Santamaría, D. E.,Angulo, M.,Ruiz, A. I.,Fernandez, R.,Ortega, A.,Cuevas, J.(2018).Low-pH cement mortar-bentonite perturbations in a small-scale pilot laboratory experiment.Clay Minerals,53,237-254.
  12. Haaramo, M.,Lehtonen, A.(2009).POSIVA Working ReportPOSIVA Working Report,Finland:.
  13. Holt, E.,Koho, P.(2016).,European Commission.
  14. Lehikoinen, J.(2009).Posiva Working ReportPosiva Working Report,Finland:.
  15. Lerouge, C.,Gaboreau, S.,Grangeon, S.,Claret, F.,Warmont, F.,Jenni, A.,Cloet, V.,Mader, U.(2017).In situ interactions between Opalinus Clay and Low Alkali Concret.Physics and Chemistry of the Earth, Parts A/B/C,99,3-21.
  16. Liu, L. N.,Chen, Y. G.,Ye, W. M.,Cui, Y. J.,Wu, D. B.(2018).Effects of hyperalkaline solutions on the swelling pressure of compacted Gaomiaozi (GMZ) bentonite from the viewpoint of Na+, cations and OH– anions.Applied Clay Science,161,334-342.
  17. Missana, T.,Alonso, U.,Albarran, N.,García-Gutiérrez, M.,Cormenzana, J. L.(2011).Analysis of colloids erosion from the bentonite barrier of a high level radioactive waste repository and implications in safety assessment.Physics and Chemistry of the Earth,36,1607-1615.
  18. Missana, T.,Alonsol, Ú.,Turrero, M. J.(2003).Generation and stability of bentonite colloids at the bentonite/granite interface of a deep geological radioactive waste repository.Journal of Contaminant Hydrology,61(1),17-31.
  19. Nakayama, M.,Sawada, S.,Sato, H.,Sugita, Y.(2012).JAEA-ResearchJAEA-Research,Japan:.
  20. Nakayama, S.,Sakamoto, Y.,Yamaguchi, T.,Akai, M.,Tanaka, T.,Sato, T.,Iida, Y.(2004).Dissolution of montmorillonite in compacted bentonite by highly alkaline aqueous solutions and diffusivity of hydroxide ions.Applied Clay Science,27(1-2),53-65.
  21. Nuclear Decommissioning Authority.NDA ReportNDA Report,United Kingdom.
  22. Pusch, R.,Svemar, C.(2004).International Progress ReportInternational Progress Report,Sweden, Stockholm:.
  23. Ramı rez, S.,Cuevas, J.,Vigil, R.,Leguey, S.(2002).Hydrothermal alteration of “La Serrata” bentonite (Almeria, Spain) by alkaline solutions.Applied Clay Science,21(5-6),257-269.
  24. Schneider, M.,Harms, R.,Jungjohann, A.,Thurmann, A.(2019).,Germany:.
  25. SKB(2006).,Sweden, Stockholm.
  26. SKB(2010).Design, production and initial state of the backfill and plug in deposition tunnels.
  27. SKB(2010).Design, production and initial state of the buffer.
  28. Sun, Z.,Chen, Y.,Cui, Y.,Xu, H.,Ye, W.,Wu, D.B.(2018).Effect of synthetic water and cement solutions on the swelling pressure of compacted Gaomiaozi (GMZ) bentonite: The Beishan site case, Gansu, China.Engineering Geology,244,66-74.
  29. Taylor, H. F. W.(1987).A method for predicting alkali ion concentrations in cement pore solutions.Advances in Cement Research,1(1),5-16.
  30. Vogt, C.,Lagerblad, B.,Wallin, K.,Baldy, F.,Jonasson, J. E.(2009).SKBSKB,Sweden, Stockholm:.
  31. Watson, C.,Benbow, S.,Savage, D.(2007).SKI ReportSKI Report,Swedish:.
  32. Ye, W. M.,Zheng, Z. J.,Chen, B.,Chen, Y.G.,Cui, Y. J.,Wang, J.(2014).Effects of pH and temperature on the swelling pressure and hydraulic conductivity of compacted GMZ01 bentonite.Applied Clay Science,101,192-198.
  33. 劉偉,梁棟,李洪輝,賈梅蘭,趙帥維,毛亮,楊仲田(2018)。膨潤土與水相互作用初步研究。輻射防護,38(4),331-336。