题名

不同鋼纖維型式與含量對超高性能混凝土抗彎性能之影響

并列篇名

EFFECT OF DISTINCT STEEL FIBER TYPES AND CONTENTS ON THE FLEXURAL PROPERTIES OF ULTRA-HIGH PERFORMANCE CONCRETE

DOI

10.6652/JoCICHE.202209_34(5).0004

作者

賴怡君(Yi-Chun Lai);李明輝(Ming-Hui Lee);戴毓修(Yuh-Shiou Tai)

关键词

超高性能混凝土 ; 鋼纖維 ; 三分點抗彎試驗 ; 殘餘強度 ; ultra-high performance concrete ; steel fiber ; third-point loading ; residual strength

期刊名称

中國土木水利工程學刊

卷期/出版年月

34卷5期(2022 / 09 / 01)

页次

387 - 396

内容语文

英文

中文摘要

超高性能混凝土(ultra-high performance concrete, UHPC)是一種先進的水泥基複合材料,與傳統混凝土相比,具有更高的力學和耐久性能。其中,採用不連續的鋼纖維對UHPC基體脆性的改善,及開裂後強度與韌性的提升有明顯地幫助,尤其是鋼纖維的型式及含量對UHPC的新拌與硬固性質影響甚鉅。本研究以兩款不同水灰比之配比,研究不同型式鋼纖維分別以含量為體積比1%和2%對超高性能混凝土(UHPC)抗彎行為之影響,試驗結果顯示,螺旋型鋼纖維過度握裹與反扭轉力矩會導致基體在纖維拔出前碎裂,因此降低了載重與變形能力,但整體而言,各種鋼纖維都隨著體積比的增加,對UHPC的抗彎強度與韌性有明顯提升。而UHPC殘餘強度之折減情況,鋼纖維體積比為1%時殘餘強度折減率均高於2%時,其中直線型鋼纖維的強度折減率最高,顯示在試體開裂後因直線型鋼纖維光滑的表面使握裹力不足,橋接效應較差,導致折減率也偏高。而螺旋纖維與彎鉤纖維等變形鋼纖維於淨撓度L/50處折減率均維持60%上下,凸顯出變形鋼纖維對UHPC開裂後能發揮較佳之橋接效應。

英文摘要

Ultra-high performance concrete (UHPC) is an innovative composite cementitious material with higher mechanical and durability properties. The use of discontinuous steel fibers has significantly contributed to the improvement of the brittleness of UHPC and the enhancement of post-cracking strength and toughness. Significantly, the type and content of steel fibers greatly influence the fresh and hardening properties of UHPC. This study investigated the effect of different steel fibers with volume ratios of 1% and 2% on the bending behavior of UHPC with two water- cement ratios. The test results show that over-bond and untwisting torque of twisted steel fibers would cause matrix damage before the fiber was pulled out, thereby reducing loading and deformation capacity. Overall, all types of steel fibers improved the flexural strength and toughness of UHPC with increasing volume fraction. In terms of strength reduction, the UHPC residual strength of 1% steel fibers is reduced by more than 2%. The reduction rate of straight steel fibers was the highest, which shows that the smooth surface of straight steel fiber caused insufficient bond force and bridging effect after cracking and caused a high reduction rate. While the strength reduction rate of deformed steel fibers, such as twisted and hooked fibers, remained about 60% at the net deflection of L/50, highlighting that the deformed steel fibers provided a better bridging effect on UHPC specimen cracking.

主题分类 工程學 > 土木與建築工程
工程學 > 水利工程
工程學 > 市政與環境工程
参考文献
  1. 賴怡君,李明輝,戴毓修(2021)。鋼纖維型式與含量對超高性能混凝土抗彎性能之影響。台灣混凝土學會 2021 年混凝土工程研討會論文集,高雄:
    連結:
  2. (2012).ASTM C1609/C1609M. Standard Test Method for Flexural Performance of Fiber‐Reinforced Concrete (Using Beam With Third‐Point Loading).West Conshohocken, PA:ASTM International.
  3. (2020).ASTM C1437-20, “Standard Test Method for Flow of Hydraulic Cement Mortar”.West Conshohocken, PA:ASTM International.
  4. Abbas, S.,Soliman, A. M.,Nehdi, M. L.(2015).Exploring mechanical and durability properties of ultra-high performance concrete incorporating various steel fiber lengths and dosages.Construction and Building Materials,75,429-441.
  5. Bajaber, M. A.,Hakeem, I. Y.(2021).UHPC evolution, development, and utilization in construction: A review.Journal of Materials Research and Technology,10,1058-1074.
  6. Blazy, J.,Blazy, R.(2021).Polypropylene fiber reinforced concrete and its application in creating architectural forms of public spaces.Case Studies in Construction Materials,14,e00549.
  7. Denarié, E.,Brühwiler, E.(2011).Strain-hardening ultra high performance fibre reinforced concrete: deformability versus strength optimization.Restoration of Buildings and Monuments,17(6),397-410.
  8. El-Tawil, S.,Tai, Y. S.,Belcher, J. A., II,Rogers, D.(2020).Open-recipe ultra-high-performance concrete.Concrete International,42(6),33-38.
  9. Hung, C. C.,Chen, Y. T.,Yen, C. H.(2020).Workability, fiber distribution, and mechanical properties of UHPC with hooked end steel macro-fibers.Construction and Building Materials,260(10),119944.
  10. Hung, C. C.,Chueh, C. Y.(2016).Cyclic behavior of UHPFRC flexural members reinforced with high-strength steel rebar.Engineering Structures,122(1),108-120.
  11. Hung, C. C.,El-Tawil, S.,Chao, S. H.(2021).A review of developments and challenges for UHPC in structural engineering: behavior, analysis, and design.Journal of Structural Engineering,147(9),03121001.
  12. Hung, C. C.,Hu, F. Y.,Yen, C. H.(2018).Behavior of slender UHPC columns under eccentric loading.Engineering Structures,174,701-711.
  13. Kim, D. J.,Park, S. H.,Ryu, G. S.,Koh, K. T.(2011).Comparative flexural behavior of hybrid ultra-high performance fiber reinforced concrete with different macro fibers.Construction and Building Materials,25(11),4144-4155.
  14. Le-Hoang, A.,Fehling, E.(2017).Influence of steel fiber content and aspect ratio on the uniaxial tensile and compressive behavior of ultra-high performance concrete.Construction and Building Materials,153,790-806.
  15. Nguyen, D. L.,Kim, D. J.,Ryu, G. S.,Koh, K. T.(2013).Size effect on flexural behavior of ultra-high performance hybrid fiber-reinforced concrete.Composites Part B: Engineering,45(1),1104-1116.
  16. Park, J. J.,Yoo, D. Y.,Park, G. J.,Kim, S. W.(2017).Feasibility of reducing the fiber content in ultra-high performance fiber-reinforced concrete under flexure.Materials,10(118),1-15.
  17. Pyo, S.,Wille, K.,El-Tawil, S.,Naaman, A. E.(2015).Strain rate dependent properties of ultra-high performance fiber reinforced concrete (UHP-FRC) under tension.Cement and Concrete Composites,56,15-24.
  18. Ren, G. M.,Wub, H.,Fang, Q.,Liu, J. Z.(2018).Effects of steel fiber content and type on static mechanical properties of UHPCC.Construction and Building Materials,163,826-839.
  19. Savino, V.,Lanzoni, L.,Tarantino, A. M.,Viviani, M.(2018).Simple and effective models to predict the compressive and tensile strength of HPFRC as the steel fiber content and type changes.Composites Part B: Engineering,137(15),153-162.
  20. Schmidt, M.,Fehling, E.(2005).Ultra-high-performance concrete: Research, development and application in Europe.ACI Special publication,228,51-78.
  21. Šerelis, E.,Vaitkevičius, V.,Kerševičius, V.,Deligia, M.(2015).Influence of water to cement ratio with different amount of binder on properties of ultra-high performance concrete.Journal of Sustainable Architecture and Civil Engineering,1(10),78-86.
  22. Sritharan, S.,Doiron, G.,Bierwagen, D.,Keierleber, B.,Abu-Hawash, A.(2018).First application of UHPC bridge deck overlay in North America.Transportation Research Record,2672(26),40-47.
  23. Tai, Y. S.,El-Tawil, S.(2017).High loading-rate pullout behavior of inclined deformed steel fibers embedded in ultra-high performance concrete.Construction and Building Materials,148,204-218.
  24. Tai, Y. S.,El-Tawil, S.,Chung, T. H.(2016).Performance of deformed steel fibers embedded in ultra-high performance concrete subjected to various pullout rates.Cement and Concrete Research,89,1-13.
  25. Tai, Y. S.,Tawil, S. E.,ASCE, F.,Meng, B.,Hansen, W.(2020).Parameters influencing fluidity of UHPC and their effect on mechanical and durability properties.Journal of Materials in Civil Engineering,32(10),04020298.
  26. Toutlemonde, F.,Resplendino, J.(2017).AFGC-ACI-fib-RILEM International Conference on Ultra-High Performance Fibre-Reinforced Concrete Building with UHPFRC: New large-scale implementations, recent technical advances, experience and standards.Proceedings of the International Symposium on Ultra High Performance Fibre-Reinforced Concrete
  27. Uchida, Y.,Tanaka, Y.,Katagiri, M.,Niwa, J.(2005).JSCE (Japan Society of Civil Engineers) Recommendations for design and construction of ultra-high strength fiber reinforced concrete structures (Draft).Concrete Journal,43(3)
  28. Voo, Y. L.,Foster, S. J.,Voo, C. C.(2015).Ultra high performance concrete segmental bridge technology: Toward sustainable bridge construction.Journal of Bridge Engineering,20(8),B5014001.
  29. Wille, K.,El-Tawil, S.,Naaman, A. E.(2014).Properties of strain hardening ultra-high performance fiber reinforced concrete (UHP-FRC) under direct tensile loading.Cement and Concrete Composites,48,53-66.
  30. Wille, K.,Kim, D. J.,Naaman, A. E.(2011).Strain hardening UHP-FRC with low fiber contents.Materials and structures,44(3),583-598.
  31. Wu, Z.,Khayat, K. H.,Shi, C.(2018).How do fiber shape and matrix composition affect fiber pullout behavior and flexural properties of UHPC?.Cement and Concrete Composites,90,193-201.
  32. Yoo, D. Y.,Kang, S. T.,Yoon, Y. S.(2014).Effect of fiber length and placement method on flexural behavior, tension-softening curve, and fiber distribution characteristics of UHPFRC.Construction and Building materials,64,67-81.
  33. Yoo, D. Y.,Kim, S.(2019).Comparative pullout behavior of half-hooked and commercial steel fibers embedded in UHPC under static and impact loads.Cement and Concrete Composites,97,89-106.
  34. Yoo, D. Y.,Kim, S.,Park, G. J.,Park, J. J.,Kim, S. W.(2017).Effects of fiber shape, aspect ratio, and volume fraction on flexural behavior of ultra-high-performance fiber-reinforced cement composites.Composite Structures,174,375-388.
  35. Zhou, H.,Jia, B.,Huang, H.,Mou, Y.(2020).Experimental study on basic mechanical properties of basalt fiber reinforced concrete.Materials,13(6),1362.