题名

以簡易直流電阻評估鋼筋混凝土受高溫後之殘餘握裹

并列篇名

A RAPID DC APPROACH FOR ASSESSING THE POST-HIGH-TEMPERATURE RESIDUAL BONDING STRENGTH OF REINFORCED CONCRETE ELEMENTS

DOI

10.6652/JoCICHE.202209_34(5).0006

作者

王楚弦(Chu-Hsien Wang);詹凱任(Kai-Ren Zhan);侯琮欽(Tsung-Chin Hou)

关键词

混凝土 ; 高溫 ; 殘餘握裹 ; 直流電阻 ; 非破壞檢測 ; concrete ; post-high-temperature ; residual bonding strength ; DC resistance ; nondestructive testing

期刊名称

中國土木水利工程學刊

卷期/出版年月

34卷5期(2022 / 09 / 01)

页次

407 - 414

内容语文

英文

中文摘要

高溫火害影響鋼筋混凝土的物性與化性,其造成的改變通常是不可逆的,不僅混凝土本身的強度受到影響,混凝土與鋼筋的界面亦遭弱化,最後導致鋼筋混凝土構件的力學行為產生變化。混凝土強度與鋼筋握裹力兩者皆為高溫火害後進行修復、補強或拆除時之重要評估指標,亟需有效且快速的檢測法對其進行評估。本研究以簡易二電極直流電阻探討混凝土受高溫作用後其內埋鋼筋之殘餘握裹強度,試驗中混凝土試體設計涵蓋三種常見之水灰比,承受低溫(100°C)、中溫(250°C)與高溫(400°C)三種溫度分別延燒30至120分鐘,並量測其高溫前後之混凝土抗壓強度、單筋拉拔強度及直流電阻值。研究結果顯示隨熱負載程度(溫度與延燒時間)增加,上述三種指標皆有明顯下降趨勢,其中電阻值對熱負載之變化相對較敏感,雖然用以評估鋼筋殘餘握裹之表現不如抗壓強度指標,但其仍具有簡易且快速之優勢,並能在低熱負載時反映出混凝土產生之微裂縫。

英文摘要

High temperature damage affects reinforced concrete's physical and chemical properties, and the changes caused by it are usually irreversible. Not only the strength of the concrete itself is affected, but also the interface between concrete and rebars is weakened, resulting in changes in the mechanical behavior of reinforced concrete components. The strength of concrete and the bonding strength of rebars are both important evaluation indicators for repair, retrofitting, or demolition after high temperature fire damage. There is an urgent need for an effective and rapid detection method to evaluate them. In this study, a simple two-electrode DC resistance was used to investigate the residual bonding strength of the embedded rebars in concrete subjected to high temperatures. The design of concrete specimens in tests covered three common water-cement ratios and were subjected to various thermal loads with low (100°C), medium (250°C), and high temperature (400°C) lasting for 30 to 120 minutes. The corresponding compressive strengths, single rebar pull-out strengths, and DC resistivities before and after high temperature conditioning were measured, compared and analyzed. Our results indicated that all the above mentioned three measurements decreased with the degrees of thermal loads (temperature and burning time). Among them, DC resistivity values were relatively sensitive to the changes of thermal loads. Although the performance used to evaluate the residual bonding strength of rebars is not as good as the compressive strength, it still has the advantage of being simple, fast and nondestructive. It also shows the ability to reflect the changes of porosity as well as microstructures caused by light thermal loads at early stages.

主题分类 工程學 > 土木與建築工程
工程學 > 水利工程
工程學 > 市政與環境工程
参考文献
  1. (1984)。CNS 11152,「根據鋼筋混凝土握裹力比較混凝土性能試驗法」,中華民國國家標準 (1984)。
  2. (2002)。CNS 1232,「混凝土圓柱試體抗壓強度檢驗法」,中華民國國家標準 (2002)。
  3. (2020).ASTM C42 / C42M-20., “Standard Test Method for Obtaining and Testing Drilled Cores and Sawed Beams of Concrete”.West Conshohocken, PA:ASTM International.
  4. (2018).ASTM C805/C805M-18., “Standard Test Method for Rebound Number of Hardened Concrete”.West Conshohocken, PA:ASTM International.
  5. A. Ferhat, B.,Rustem, G.(2009).Residual bond strength between steel bars and concrete after elevated temperatures.Fire Safety Journal,44,854-859.
  6. ASTM International(2017).C778-17 Standard Specification for Standard Sand.West Conshohocken, PA:
  7. ASTM International(2017).C150 Standard Specification for Portland Cement.West Conshohocken, PA:
  8. Biqin, D.,Guiyun, S.(2018).Visualized tracing of rebar corrosion evolution in concrete with x-ray micro computed tomography method.Cement and Concrete Composites,92
  9. Brigitte, G.,Nemkumar, B.(2020).Use of infrared thermal imaging to detect corrosion of epoxy coated and uncoated rebar in concrete.Construction and Building Materials,263
  10. Bruce, J. C.,Thomas, O, M.(2005).Impedance spectroscopy of hydrating cement ‐ based materials: measurement, interpretation, and application.Journal of the American Ceramic Society,77,2789-2804.
  11. Chiang, C. H.,Tsai, C. L.,Kan, Y. C.(2000).Acoutic inspection of bond strength of steel-reinforced mortar after exposure to elevated temperature.Ultrasonics,38(1-8),534-536.
  12. Durate, R. G.(2014).Corrosion behavior of stainless steel rebars embedded in concrete: An electrochemical impedance spectroscopy study.Electrochimica Acta,124,218-224.
  13. Erman, D.,Egemen, T.(2019).Temperature and moisture effects on electrical resistance and strain sensitivity of smart concrete.Cement and Concrete Composites,224
  14. Gloria, C.(2020).Electrical resistivity and electrical impedance measurement in mortar and concrete elements: A systematic review.Applied Sciences,10
  15. Gutiérrez Gnecchi, J.A.(2012).Soil water infiltration measurements using electrical impedance tomography.Chemical Engineering Journal,191,13-21.
  16. Holm, T. A.(1994).Lightweight concrete and aggregates.
  17. Hou, T. C.,Lynch, J. P.(2009).Electrical impedance tomographic methods for sensing strain fields and crack damage in cementitious structures.Journal of Intelligent Materials & Structural Systems,1363-1379.
  18. Laureti, S.,Ricci, M.(2018).Detection of rebars in concreteusing advanced ultrasonic pulse compression techniques.Ultrasonics,85,31-38.
  19. Miroslav, L.,Ivo, K.(2016).Comparison of results of impedance spectroscopy methods with results of impact echo method in investigation of high-temperature degraded concrete.Procedia Engineering,151,265-270.
  20. Monika, Z.,Magdalena, R.(2020).Detection of debonding in reinforced concrete beams using ultrasonic transmission tomography and hybrid ray tracing.Construction and Building Materials,262
  21. Rami, H. H.,Linda, G. S.(2004).Post-fire behavior of bond between high strength pozzolanic concrete and reinforcing steel.Construction and Building Materials,18,425-435.
  22. Thomas, O, M.(2002).Impedance spectroscopy of fiber reinforced cement composites.Cement & Concrete Composites,24,457-465.
  23. Yang, H. F.(2016).Evaluation of bond performance between deformed bars and recycled aggregate concrete after high temperatures exposure.Construction and Building Materials,112,885-891.
  24. Zohra, D.,Arnaud, C.(2016).Prediction of the steel concrete bond strength from the compressive strength of Portland cement and geopolymer concretes.Construction and Building Materials,119,329-342.
  25. 內政部消防署,「101 至 110 年全國火災次數、起火原因及火災損失統計」。
  26. 沈進發,陳舜田(1999)。高溫造成混凝土材料性質改變及火害災後安全評估法研討會
  27. 林坤嶔(2014)。臺南,國立成功大學土木研究所。
  28. 張郁慧(1993)。台北,國立台灣工業技術學院。
  29. 許崇堯(1990)。台北,國立台灣工業技術學院。
  30. 賀天行(2016)。臺南,國立成功大學土木研究所。