题名

以奈米壓痕技術探討鹼激發爐碴基漿體之微觀力學性質

并列篇名

MICROMECHANICAL PROPERTIES OF ALKALI-ACTIVATED SLAG-BASED PASTE EXPLORED BY NANOINDENTATION

DOI

10.6652/JoCICHE.202209_34(5).0009

作者

莊昀倩(Yun-Chien Chuang);周侑婷(Yu-Ting Chou);陳君弢(Chun-Tao Chen);陳璽安(Hsi-An Chen)

关键词

奈米壓痕 ; 水淬高爐爐碴粉 ; 鹼激發 ; 簡化模數 ; nanoindentation ; ground granulated blast furnace slag (GGBS) ; alkali-activation ; reduced modulus

期刊名称

中國土木水利工程學刊

卷期/出版年月

34卷5期(2022 / 09 / 01)

页次

435 - 440

内容语文

英文

中文摘要

本研究以奈米壓痕技術測定水淬高爐爐碴粉基鹼激發漿體之簡化模數與硬度,探討其微觀力學性質與抗壓強度、齡期、液固比(0.4、0.6)、鹼激發劑混合比例(氫氧化鈉與水玻璃體積比=4:6、5:5、6:4)間的關係。單點壓痕試驗的結果顯示,未反應之爐碴粉較反應膠結物具有較高的簡化模數與硬度。於各齡期時,液固比0.4之配比較液固比0.6者具有較高的抗壓強度,同時其7天與28天齡期時的簡化模數與硬度較高。混合比4:6者具有最高的7天與28天抗壓強度。於7天齡期時,其反應膠結物的簡化模數和硬度亦皆較高。

英文摘要

This study determined the reduced modulus and hardness of the ground granulated blast furnace slag (GGBS)-based alkali-activated paste using nanoindentation to explore the relationships among its micromechanical properties and the compressive strength, the age, the liquid to solid ratios (LS) (0.4 and 0.6) and the sodium hydroxide (Na(OH)2) to the water glass (WG) volume ratio of the alkaline activating solutions (4:6, 5:5, 6:4). The single-point nanoindentation showed that the white GGBS dots had higher reduced moduli and hardness than the dark hydration products. The mix with the liquid-to-solids ratio of 0.4 had a higher compressive strength than that with a ratio of 0.6 at all ages, and it had higher reduced moduli and hardness at 7 and 28 days. The mix with a ratio of Na(OH)_2:WG = 4:6 had the highest compressive strengths at 7 and 28 days, and it also had the highest reduced moduli and hardness at the dark hydration products at 7 days.

主题分类 工程學 > 土木與建築工程
工程學 > 水利工程
工程學 > 市政與環境工程
参考文献
  1. Gao, X.,Yu, Q. L.,Brouwers, H. J. H.(2015).Reaction kinetics, gel character and strength of ambient temperature cured alkali activated slag-fly ash blends.Construction and Building Materials,80,105-115.
  2. Gautham, S.,Saptarshi, S.(2019).Recent advances in evaluation of intrinsic mechanical properties of cementitious composites using nanoindentation technique.Construction and Building Materials,223,883-897.
  3. Hu, C.,Li, Z.(2015).A review on the mechanical properties of cement-based materials measured by nanoindentation.Construction and Building Materials,90,80-90.
  4. Humad, A. M.,Provis, J. L.,Habermehl-Cwirzen, K.(2021).Creep and long-term properties of alkali-activated Swedish-slag concrete.Journal of Materials in Civil Engineering,33,04020475.
  5. Luo, Z.,Li, W.,Gan, Y.,Mendu, K.,Shah, S.P.(2020).Applying grid nanoindentation and maximum likelihood estimation for N-A-S-H gel in geopolymer paste: investigation and discussion.Cement and Concrete Research,135,106112.
  6. Luukkonen, T.,Abdollahnejad, Z.,Yliniemi, J.,Kinnunen, P.,Illikainen, M.(2018).One-part alkali-activated materials: A review.Cement and Concrete Research,103,21-34.
  7. Oliver, W. C.,Pharr, G. M.(1992).An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments.Journal of Materials Research,7,1564-1583.
  8. Wang, A.,Zheng, Y.,Zhang, Z.,Liu, K.,Li, Y.,Shi, L.,Sun, D.(2020).The durability of alkali-activated materials in comparison with ordinary Portland cements and concrete: A review.Engineering,6,695-706.
  9. Wardhono, A.,Law, D. W.,Molyneaux, T. C. K.(2015).Long term performance of alkali activated slag concrete.Journal of Advanced Concrete Technology,13,187-192.
  10. 周侑婷(2019)。臺北市,國立臺灣科技大學營建工程系。
  11. 莊昀倩(2021)。臺北市,國立臺灣科技大學營建工程系。