题名

利用快速氯離子傳輸試驗探討水泥質材料中飛灰爐石對界面過渡區傳輸性質的影響

并列篇名

USING RAPID CHLORIDE MIGRATION TEST TO DETERMINE THE INFLUENCE OF TRANSPORT PROPERTY FOR INTERFACIAL TRANSITION ZONE IN CEMENT-BASED MATERIAL WITH FLY ASH AND SLAG

DOI

10.6652/JoCICHE.202209_34(5).0010

作者

黃康訓(Kang-Shiun Huang);楊仲家(Chung-Chia Yang)

关键词

飛灰 ; 水淬高爐石 ; 快速氯離子傳輸試驗 ; 界面過渡區 ; fly ash ; granulated blast furnace slag ; rapid chloride migration test ; ITZ

期刊名称

中國土木水利工程學刊

卷期/出版年月

34卷5期(2022 / 09 / 01)

页次

441 - 446

内容语文

英文

中文摘要

由於界面過渡區(ITZ)的傳輸性質難以量化,本研究應用快速氯離子傳輸試驗量測ITZ的氯離子侵入深度,並計算ITZ的氯離子傳輸係數(電場作用下氯離子的擴散係數)。為了獲得連續型ITZ,砂漿試樣中添入圓形粒料棒(ϕ19 mm × 50 mm)。結果顯示:圓形粒料棒周遭形成連續型ITZ,ITZ具有比matrix更高的氯離子侵入深度。水泥質材料中ITZ與matrix的氯離子傳輸係數會受水膠比的影響。試樣添加飛灰與水淬高爐石,ITZ改善量分別為matrix改善量的2.4與1.5倍。

英文摘要

The transport properties of the interfacial transition zone (ITZ) are difficult to quantify; thus, this study applies the rapid chloride migration test for measuring the chloride penetration depth of the ITZ and determining the migration coefficient (the diffusivity of chlorides under an electric field) of the ITZ. To obtain a continuous ITZ, a mortar specimen was added with a rod-shaped aggregate (φ19 mm × 50 mm). The results indicated that a continuous ITZ formed around a rod-shaped aggregate, and the ITZ had higher chloride penetration depth than the matrix. The migration coefficient of the ITZ and that of the matrix were affected by the w/b ratio for the cement-based materials. The improvement amount of ITZ was up to the 1.5 and 2.4 times that of the matrix for adding fly ash and granulated blast furnace slag, respectively.

主题分类 工程學 > 土木與建築工程
工程學 > 水利工程
工程學 > 市政與環境工程
参考文献
  1. (1999).NT Build 492, “Chloride migration coefficient from non-steady-state migration experiments,” Nordtest Method(1999)..
  2. Bourdette, B.,Ringot, E.,Ollivier, J. P.(1995).Modelling of the transition zone porosity.Cement and Concrete Research,25(4),741-751.
  3. Chancey, R. T.,Stutzman, P.,Juenger, M. C.,Fowler, D. W.(2010).Comprehensive phase characterization of crystalline and amorphous phases of a Class F fly ash.Cement and Concrete Research,40(1),146-156.
  4. Delagrave, A.,Marchand, J.,Pigeon, M.(1998).Influence of microstructure on the tritiated water diffusivity of mortars.Advanced Cement Based Materials,7(2),60-65.
  5. Gao, J. M.,Qian, C. X.,Liu, H. F.,Wang, B.,Li, L.(2005).ITZ microstructure of concrete containing GGBS.Cement and Concrete Research,35(7),1299-1304.
  6. Garboczi, E. J.,Bentz, D. P.(1998).Multiscale Analytical/Numerical Theory of the Diffusivity of Concrete.Advanced Cement Based Materials,8(2),77-88.
  7. Jiang, J. Y.,Sun, G. W.,Wang, C. H.(2013).Numerical calculation on the porosity distribution and diffusion coefficient of interfacial transition zone in cement-based composite materials.Construction and Building Materials,39,134-138.
  8. Kuroda, M.,Watanabe, T.,Terashi, N.(2000).Increase of bond strength at interfacial transition zone by the use of fly ash.Cement and Concrete Research,30(2),253-258.
  9. Larbi, J.,Bijen, J.(1990).Effects of water-cement ratio, quantity and fineness of sand on the evolution of lime in set Portland cement systems.Cement and Concrete Research,20(5),783-794.
  10. Leung, C.K.Y.(Ed.),Li, Z.(Ed.),Ding, J.T.(Ed.)(2000).High Performance Concrete: Workability, Strength and Durability.Hong Kong:The Hong Kong University of Science and Technology.
  11. Liao, K. Y.,Chang, P. K.,Peng, Y. N.,Yang, C.-C.(2004).A study on characteristics of interfacial transition zone in concrete.Cement and Concrete Research,34(6),977-989.
  12. Nežerka, V.,Bílý, P.,Hrbek, V.,Fládr, J.(2019).Impact ofsilica fume, fly ash, and metakaolin on the thickness and strength of the ITZ in concrete.Cement and Concrete Research,103,252-262.
  13. Shafikhani, M.,Chidiac, S. E.(2020).A holistic model for cement paste and concrete chloride diffusion coefficient.Cement and Concrete Research,133,106049.
  14. Tang, L.(1999).Concentration dependence of diffusion and migration of chloride ions.Cement and Concrete Research,29,1463-1468.
  15. Wei, Y.,Kong, W.,Wang, Y.,Sha, A.(2021).Multifunctional application of nanoscratch technique to characterize cementitious materials.Cement and Concrete Research,140,106318.
  16. Whittaker, M.,Zajac, M.,Haha, M. B.,Bullerjahn, F.,Black, L.(2014).The role of the alumina content of slag, plus the presence of additional sulfate on the hydration and microstructure of Portland cement-slag blends.Cement and Concrete Research,66,91-101.
  17. Wu, K.,Shi, H.,Xu, L.,Ye, G.,De Schutter, G.(2016).Microstructural characterization of ITZ in blended cement concretes and its relation to transport properties.Cement and Concrete Research,79,243-256.
  18. Yang, C. C.(2006).On the relationship between pore structure and chloride diffusivity from accelerated chloride migration test in cement-based materials.Cement and Concrete Research,36(7),1304-1311.
  19. Yang, C. C.,Cho, S. W.(2005).Approximate migration coefficient of percolated interfacial transition zone by using the accelerated chloride migration test.Cement and Concrete Research,35(2),344-350.
  20. Yang, C. C.,Su, J. K.(2002).Approximate migration coefficient of interfacial transition zone and the effect of aggregate content on the migration coefficient of mortar.Cement and Concrete Research,32(10),1559-1565.
  21. Zhan, B. J.,Xuan, D. X.,Poon, C. S.,Scrivener, K. L.(2020).Characterization of interfacial transition zone in concrete prepared with carbonated modeled recycled concrete aggregates.Cement and Concrete Research,136,106175.
  22. Zheng, J. J.,Li, C. Q.,Zhou, X. Z.(2005).Characterizationof microstructure of interfacial transition zone in concrete.ACI materials journal,102(4),265.
  23. Zhu, X.,Gao, Y.,Dai, Z.,Corr, D. J.,Shah, S. P.(2018).Effect of interfacial transition zone on the Young's modulus of carbon nanofiber reinforced cement concrete.Cement and Concrete Research,107,49-63.