题名

土壤剪力波速經驗式與其不確定性之率定-基隆河與淡水河岸沖積場址案例研究

并列篇名

CALIBRATION OF EMPIRICAL FORMULAS OF SHEAR WAVE VELOCITY AND THEIR UNCERTAINTIES - A CASE STUDY IN ALLUVIUM SITES ALONG KEELUNG AND TAMSUI RIVER

DOI

10.6652/JoCICHE.202304_35(2).0002

作者

王俊翔(Jiun-Shiang Wang);黃俊鴻(Jin-Hung Hwang);盧志杰(Chih-Chieh Lu);鄧源昌(Yuan-Chang Deng)

关键词

剪力波速 ; 標準貫入試驗 ; 圓錐貫入試驗 ; 臺北盆地沖積層 ; shear wave velocity ; standard penetration tests (SPT) ; piezocone penetration tests (CPTU) ; alluvium of Taipei basin

期刊名称

中國土木水利工程學刊

卷期/出版年月

35卷2期(2023 / 04 / 01)

页次

119 - 130

内容语文

繁體中文;英文

中文摘要

土壤剪力波速(V_s)為重要之地工設計參數,雖以現地震測方法直接量測為最佳,但實務上因經濟考量,常以經驗式估計剪力波速,用於耐震地盤分類,因此經驗式之準確性相當重要。本研究蒐集整理臺北盆地13個同時具有跨孔震測、SPT與CPTU試驗之基隆河與淡水河岸沖積土層場址,所得之高品質試驗資料。首先進行資料的分類,初步探討剪力波速與土層深度,SPT與CPTU相關參數之相關性,繼則以此資料檢驗各種既有代表性經驗公式之適用性,結果顯示剪力波速與SPT-N及CPTU-q_c之相關性不高,與土層深度相關性較高,耐震規範之既有經驗公式並不適用。故本研究採用上述資料,重新迴歸各種準確度較高之剪力波速經驗公式,並以統計估計理論量化這些經驗公式之不確定性。所建議之經驗公式可供工程設計者參考,對應之不確定性模型與參數,可供可靠度分析應用。

英文摘要

Soil shear wave velocity (V_s) is an important parameter for geotechnical engineering design. The in-situ seismic test is the best method to measure it directly. In practice, due to economic considerations, and empirical formulas suggested in the seismic codes and literatures are often used to estimate the shear wave velocity for seismic site classification. Therefore, the accuracy of the empirical formula is very important. This research collects the high quality data from 13 alluvium sites along Keelung and Tamsui River in Taipei Basin with cross-hole seismic survey, SPT and CPTU tests at the same site. First, this study classifies the data, and discuss the correlations between shear wave velocity and soil depth, SPT and CPTU related parameters. After that, this database is exploited to test the applicability of various existing representative empirical formulas. The results show that V_s is not highly correlated with SPT-N and CPTU-q_c, whereas highly correlated with the depth of the soil layer. The existing empirical formula of the seismic code seems not applicable. Therefore, this study uses the above data to regress various empirical formulas of shear wave velocity with higher accuracy, and uses statistical estimation to quantify the uncertainty of these formulas. The suggested formulas can be used as reference for designers, and the corresponding uncertainty models and parameters can be used for reliability analysis applications.

主题分类 工程學 > 土木與建築工程
工程學 > 水利工程
工程學 > 市政與環境工程
参考文献
  1. 王俊翔,黃俊鴻,盧志杰,鄧源昌(2020)。臺北盆地沖積土層剪力波速量測方法不確定性之研究。中國土木水利工程學刊,32(7),633-644。
    連結:
  2. Akin, M. K.,Kramer, S. L.,Topal, T.(2011).Empirical correlations of shear wave velocity (Vs) and penetrations resistance (SPT-N) for different soils in an earthquakeprone area (Erbaa-Turkey).Engineering Geology,119,1-17.
  3. Andrus, R. D.(1994).Austin, TX.,Department of Civil Engineering, University of Texas.
  4. Andrus, R. D.,Mohanan, N. P.,Piratheepan, P.,Ellis, B. S.,Holzer, T. Z.(2007).Predicting shear-wave velocity from cone penetration resistance.Proceedings of 4th International Conference on Earthquake Geotechnical Engineering,Thessaloniki, Greece:
  5. Andrus, R. D.,Stokoe, K. H.(2000).Liquefaction resistance of soils from shear-wave velocity.Journal of Geotechnical and Geoenvironmental Engineering, ASCE,126(11),1015-1025.
  6. Andrus, R. D.,Stokoe, K. H.,Juang, C. H.(2004).Guide for shear-wave-based liquefaction potential evaluation.Earthquake Spectra,20(2),285-308.
  7. Baldi, G.,Bellotti, R.,Ghionna, V. N.,Jamiolkowski, M.,LoPresti, D. C. F.(1989).Modulus of sands from CPTs and DMTs.Proceedings of 12th International Conference of Soil Mechancis and Foundation Engineering,Rio de Janeiro:
  8. Barrow, B. L.,Stokoe, K. H.(1983).Austin, TX.,Department of Civil Engineering, University of Texas.
  9. Brandenberg, S. J.,Ballana, N.,Shantz, T.(2010).Shear wave velocity as statistical function of standard penetration test resistance and vertical effective stress at Caltrans bridge sites.PEER Report,2010(03)
  10. Building Seismic Safety Council=BSSC(2003).NEHRP recommended provisions and commentary for seismic regulations for new buildings and other structures.Washington, D.C:Federal Emergency Management Agency.
  11. Campbell, K. W.,Chieruzzi, R.,Duke, C. M.,Lew, M.(1979).,Los Angeles, CA.:University of California.
  12. Campbell, K. W.,Duke, C. M.(1976).,Los Angeles, CA:University of California.
  13. Chang, W. J.(2016).Evaluation of liquefaction resistance for gravelly sands using gravel content–corrected shear-wave velocity.Journal of Geotechnical and Geoenvironmental Engineering, ASCE,142(5)
  14. Ching, J.,Lin, G. H.,Chen, J. R.,Phoon, K. K.(2016).Transformation models for effective friction angle and relative density calibrated based on generic database of coarse-grained soils.Canadian Geotechnical Journal,54(4),481-501.
  15. Ching, J.,Wu, S. S.,Phoon, K. K.(2016).Statistical characterization of random field parameters using frequentist and Bayesian approaches.Canadian Geotechnical Journal,53(2),285-298.
  16. Conover, W. J.(1999).Practical Nonparametric Statistics.New York:John Wiley & Sons, Inc..
  17. DeGroot, D. J.,Baecher, G. B.(1993).Estimating autocovariance of in ‐ situ soil properties.Journal of Geotechnical Engineering,199(1)
  18. Dickenson, S. E.(1989).Berkeley, CA,Department of Civil and Environment Engineering, University of California.
  19. Dobry, R.,Vucetic, M.(1987).State of the art report: Dynamic properties and response of soft clay deposits.Proceeding of International Symposium on Geotechnical Engineering of Soft Soils, Mexico City, Vol. 2
  20. Evans, J. D.(1996).Straightforward Statistics for the Behavioral Sciences.Pacific Grove, CA:Brooks/Cole Publishing.
  21. Hasancebi, N.,Ulusay, R.(2007).Empirical correlations between shear wave velocity and penetration resistance for ground shaking assessments.Bulletin of Engineering Geology and the Environment,66,203-213.
  22. Hegazy, Y. A.,Mayne, P. W.(1995).Statistical correlations between VS and cone penetration data for different soil types.Proceedings of International Symposiums. on Cone Penetration Testing, CPT ’95, Linkoping, Sweden, Vol. 2
  23. Imai, T.,Tonouchi, K.(1982).Correlation of N value with S-wave velocity and shear modulus.2nd Proceeding of European Symposium on Penetration Testing,Ameterdam:
  24. Imai, T.,Yoshimura, M.(1975).The relation of mechanical properties of soils to p- and s-wave velocities for soil ground in Japan.OYO Corporation Technical Note,TN07
  25. Jinan, Z.(1987).Correlation between seismic wave velocity and the number of blow of SPT and depth.Selected Papers from the Chinese J. Geotech. Eng.
  26. Juang, C. H.,Jian, T.,Andrus, R. D.(2002).Assessing probability-based methods for liquefaction potential evaluation.Journal of Geotechnical and Geoenvironmental Engineering, ASCE,128(7),580-589.
  27. Kanai, K.(1966).Observation of microtremors, XI: Matsushiro earthquake swarm areas.Bulletin of Earthquake Research Institute,44(3)
  28. Kayen, R. E.,Mitchell, J. K.,Seed, R. B.,Lodge, Ashurst,Nishio, Shinya,Coutinho, R. M.(1992).Evaluation of SPT- , CPT-, and Shear Wave- based methods for liquefaction potential assessment using Loma Prieta Data.Proceedings of 4th U.S.-Japan Workshop on Earthquake Resistant Design of Lifeline Facilities and Countermeasures Against Soil Liquefaction,Honolulu, HI:
  29. Kayen, R.,Moss, R. E. S.,Thompson, E. M.,Seed, R. B.(2013).Shear-wave velocity–based probabilistic and deterministic assessment of seismic soil liquefaction potential.Journal of Geotechnical and Geoenvironmental Engineering, ASCE,139(3),407-419.
  30. Lee, S. H.(1992).Analysis of the multicollinearity of regression equations of shear wave velocities.Soils and Foundations,32(1),205-214.
  31. Lee, S. H.(1990).Regression models of shear wave velocities in taipei basin.Journal of the Chinese Institute of Engineers,13(5),519-532.
  32. Lin J. S.,Deng, J. G.,Su, Y. A.(1984).Research Report of Taiwan Construction Technology ResearchResearch Report of Taiwan Construction Technology Research,未出版
  33. Lu, C. C.,Hwang, J. H.(2019).Correlations between Vs and SPT-N by different borehole measurement methods: effect on seismic site classification.Bulletin of Earthquake Engineering,18,1139-1159.
  34. Lum, K. K. Y.,Yan, L.(1994).In situ measurements of dynamic soil properties and liquefaction resistances of gravelly soils at Keenleyside Dam.Proceeding of Ground Failure under Seismic Conditions,44,221-240.
  35. Mayne, P. W.(2006).In situ test calibrations for evaluating soil parameters.Proceedings of Characterization and Engineering Properties of Natural Soils II,Singapore:
  36. Mayne, P. W.,Rix, G. J.(1993).Gmax-qc relationships for clays.Geotechnical Testing Journal,16(1),54-60.
  37. Mayne, P. W.,Rix, G. J.(1995).Correlations between shear wave velocity and cone tip resistance in natural clays.Soils and Foundations,35(2),107-110.
  38. Ohba, S.,Toriuma, I.(1970).Research on Vibrational Characteristics of Soil Deposits in Osaka, Par 2, on Velocities of Wave Propagation and Predominant Periods of Soils Deposits.Abstracts of Techniacal Meeting of Archietural Institute of Japan
  39. Ohsaki, Y.,Iwasaki, R.(1973).On dynamic shear moduli and Poisson’s ratio of soil deposits.Soil and Foundations,13(4),61-73.
  40. Ohta, Y.,Goto, N.(1978).Empirical shear wave velocity equations in terms of characteristic soil indexes.Earthquake Engineering and Structural Dynamics,6(2),167-187.
  41. Phoon, K. K.,Kulhawy, F. H.(1999).Characterization of geotechnical variability.Canadian Geotechnical Journal,36(4),612-624.
  42. Piratheepan, P.(2002).Clemson University.
  43. Pitilakis, K.,Raptakis, D.,Lontzetidis, K.,Tika-Vassilikou, T.,Jongmans, D.(1999).Geotechnical and geophysical description of Euro-Seistests, using field, and laboratory tests and moderate strong ground motions.Jouranl of Earthquake Engineering,3(3),381-409.
  44. Rahimi, S.,Wood, C. M.,Coker, F.,Moody, T.,Bernhardt-Barry, M.,Kouchaki, B. M.(2018).The combined use of MASW and resistivity surveys for levee assessment: A case study of the Melvin Price Reach of The Wood River Levee.Engineering Geology,241,11-24.
  45. Rahimi, S.,Wood, C. M.,Wotherspoon, L. M.(2020).Influence of soil aging on SPT-Vs correlation and seismic site classification.Engineering Geology,272,105653.
  46. Rice, J. A.(2007).Mathematical Statistics and Data Analysis.Berkely Belmont, CA, USA:University of California.
  47. Robertson, P. K.(2009).Interpretation of cone penetration tests-a unified approach.Canadian Geotechnical Jouranl,46(11),1337-1355.
  48. Robertson, P. K.,Woeller, D. J.,Finn, W. D. L.(1992).Seismic cone penetration test for evaluating liquefaction potential under cyclic loading.Canadian Geotechnical Journal,29(4),686-695.
  49. Sykora, D. W.(1987).Miscellaneous PaperMiscellaneous Paper,未出版
  50. Sykora, D. W.,Stokoe, K. H.(1983).Correlations of in-situ measurements in sands of shear wave velocity.Soil Dynamics and Earthquake Engineering,20,125-136.
  51. Wair, B. R.,DeJong, J. T.,Shantz, T.(2012).Guidelines for estimation of shear wave velocity profiles.PEER Report,2012(08)
  52. 內政部營建署,建築物基礎構造設計規範,內政部營建署,第 2-4 至 2-5 頁,中華民國 (2011)。
  53. 社團法人日本道路協會(2000).道路橋示方書同解說,V 耐震設計編.日本:社團法人日本道路協會.