题名

運用即時精準多層式感測器監測給水廠之污泥操作

并列篇名

REAL-TIME PRECISION MUTI-LAYER SENSOR FOR SLUDGE THICKNESS DETECTION IN WATER TREATMENT PLANT

DOI

10.6652/JoCICHE.202304_35(2).0003

作者

吳俊毅(Chun-I Wu);莊旭楨(Hsu-Chen Chung);駱尚廉(Shang-Lien Lo)

关键词

即時精準多層式感測器 ; 水處理 ; 物聯網 ; 污泥厚度檢測 ; Real-time precision multi-layer sensor ; water processing ; internet of things ; sludge thickness detection

期刊名称

中國土木水利工程學刊

卷期/出版年月

35卷2期(2023 / 04 / 01)

页次

131 - 139

内容语文

繁體中文;英文

中文摘要

現今水處理過程中的大多數污泥排放都是通過傳統方法來控制,例如定時排放和經驗豐富的操作人員。傳統方法無法即時獲得沉澱池中的污泥厚度,因此無法有效地排放污泥,此方法的特點是低能量效率和低應變能力。本研究將即時精準多層式感測器(Real-Time Precision Multi-Layer Sensor, RTPMLS)用於檢測沉澱池中的污泥厚度。結果顯示,能在污泥排放過程中即時反應污泥厚度變化。此結果幫助水處理廠即時排放適當的污泥濃度,減少污泥脫水程序的運行次數,提高能源效率。未來將RTPMLS和物聯網(IOT)進行結合,可有效加強監測污泥沉降情形,進而提升給水廠供水穩定性。

英文摘要

Most sludge pumping in water treatment processes were manipulated by traditional approaches, such as definite time discharge and experienced workers. However, the traditional approaches cannot monitor real-time sludge thickness in a sedimentation tank. Thus, while the sludge discharge of the traditional approaches is independent to the sludge quantity in the sedimentation tank, the pumping interval of the sludge cannot be adjusted by water quality nor sludge quantity. Therefore, the traditional processes were struggled with low energy efficiency and low strain capacity. In this study, Real-Time Precision Multi-Layer Sensor (RTPMLS) for the sludge thickness detection in the sedimentation tank is proposed. With a series of experiments, we successfully demonstrate real time monitoring of sludge thickness during the discharging process. While the sludge can be discharged with appropriate concentration every time, it could reduce the operation frequency of dewater program. Thereby increasing the energy consumption efficiency. Compared to the traditional approaches, the introduction of RTPMLS stands for a more reliable sludge treatment program. In the future, the capability to connect RTPMLS and Internet of things (IOT) provides a massive potential to optimize the water treatment program, which can enhance the sludge thickness monitoring ability.

主题分类 工程學 > 土木與建築工程
工程學 > 水利工程
工程學 > 市政與環境工程
参考文献
  1. Al Nuaimi, E.,Al Neyadi, H.,Mohamed, N.,Al-Jaroodi, J.(2015).Applications of big data to smart cities.Journal of Internet Services and Applications,6,15.
  2. Asbjornsen, O. A.(1985).Chemical process control: An introduction to theory and practice: George Stephanopoulos.Automatica,21,502-504.
  3. Benschoten, J. E. V.,Edzwald, J. K.(1990).Chemical aspects of coagulation using aluminum salts-I. hydrolytic reactions of alum and polyaluminum chloride.Water Research,24,1519-1526.
  4. Brito, R. S.,Pinheiro, H. M.,Ferreira, F.,Matos, J. S.,Pinheiro, A.,Lourenco, N. D.(2016).Calibration transfer between a bench scanning and a submersible diode array spectrophotometer for in situ wastewater quality monitoring in sewer systems.Applied Spectroscopy,70,443-454.
  5. Lechelt, M.,Blohm, W.,Kirschneit, B.,Pfeiffer, M.,Gresens, E.,Liley, J.,Holz, R.,Luring, C.,Moldaenke, C.(2000).Monitoring of surface water by ultrasensitive Daphnia toximeter.Environmental Toxicology,15,390-400.
  6. Li, M.,Wan, C. Y.,Pan, X. J.,Zou, Y.,Chi, S. Y.,Chang, J. B.(2013).Complarative Study of Stress by Four Heavy Metals on Chlamydomonas Reinhardtii and The Potrential Application in BBE Algea Toximeter.Fresenius Environmental Bulletin,22,1494-1500.
  7. Lin, J. L.,Pan, J. R.,Huang, C.(2013).Enhanced particle destabilization and aggregation by flash-mixing coagulation for drinking water treatment.Separation and Purification Technology,115,145-151.
  8. Miles, S. L.,Sinclair, R. G.,Riley, M. R.,Pepper, I. L.(2011).Evaluation of select sensors for real-time monitoring of escherichia coli in water distribution systems.Applied and Environmental Microbiology,77,2813-2816.
  9. Ostfeld, A.,Salomons, E.(2004).Optimal layout of early warning detection stations for water distribution systems security.Journal of Water Resources Planning and Management,130,377-385.
  10. Pfefferle, L. D.(1984).Chemical Process-Control - An Introduction to Theory and Practice - Stephanopoulos, G.American Scientist,72,640-640.
  11. Plappally, A. K.,Lienhard, J. H.(2012).Energy requirements for water production, treatment, end use, reclamation, and disposal.Renewable & Sustainable Energy Reviews,16,4818-4848.
  12. Schleicher, J. M.,Vogler, M.,Dustdar, S.,Inzinger, C.(2016).Application architecture for the internet of cities: Blueprints for future smart city applications.Ieee Internet Computing,20,68-75.
  13. Storey, M. V.,van der Gaag, B.,Burns, B. P.(2011).Advances in on-line drinking water quality monitoring and early warning systems.Water Research,45,741-747.
  14. Tai, H.,Celesti, A.,Fazio, M.,Villari, M.,Puliafito, A.(2015).An integrated system for advanced water risk management based on cloud computing and IoT.2015 2nd World Symposium on Web Applications and Networking (WSWAN)
  15. Usin, V. V.,Kumpanenko, I. V.,Kamrukov, A. S.,Ivanova, N. A.,Raevskaya, E. G.,Panin, E. O.,Goncharova, A. E.(2014).Analytical control of the wastewater treatment process by a generalized on-line water quality index: Choice of analytical procedure and development of monitoring technology.Russian Journal of General Chemistry,84,2305-2314.
  16. van Schagen, K.,Rietveld, L.,Veersma, A.,Babuška, R.(2010).Control-design methodology for drinking-water treatment processes.Water Supply,10,121-127.
  17. Yan, M. Q.,Wang, D. S.,Ni, J. R.,Qu, J. H.,Chow, C. W. K.,Liu, H. L.(2008).Mechanism of natural organic matter removal by polyaluminum chloride: Effect of coagulant particle size and hydrolysis kinetics.Water Research,42,3361-3370.
  18. Yu, W.-Z.,Gregory, J.,Graham, N.(2016).Regrowth of broken hydroxide flocs: effect of added fluoride.Environmental Science & Technology,50(4),1828-1833.
  19. Zurita, J. L.,Jos, A.,Camean, A. M.,Salguero, M.,Lopez-Artiguez, M.,Repetto, G.(2007).Ecotoxicological evaluation of sodium fluoroacetate on aquatic organisms and investigation of the effects on two fish cell lines.Chemosphere,67,1-12.