题名

MICROPROPERTIES EFFECTS AND SYSTEMATIC EVALUTION METHOD ON MESOSCALE MECHANICAL PROPERTIES OF ROCK MATERIALS

并列篇名

影響岩石介觀力學參數的顯著微觀參數暨系統性選擇參數的方法

DOI

10.6652/JoCICHE.202304_35(2).0010

作者

Pei-Yun Shu(許珮筠);Tai-Tien Wang(王泰典);Hung-Hui Li(李宏輝)

关键词

microproperties ; mesoscale mechanical parameters ; PFC2D ; design of experiment ; 微觀特性 ; 介觀力學參數 ; 顆粒流程式 ; 實驗設計法

期刊名称

中國土木水利工程學刊

卷期/出版年月

35卷2期(2023 / 04 / 01)

页次

211 - 224

内容语文

英文;繁體中文

中文摘要

The aim of this paper is to investigate the effects of microproperties on mesoscale mechanical parameters of rock materials using particle flow code (PFC). A new approach has been devised to reveal significant microproperties on mesoscale mechanical parameters using design of experiment (DOE) and orthogonal arrays in PFC simulation. The effects of microproperties with respect to uniaxial compressive strength (UCS), Brazilian tensile strength (BTS), Young's modulus (E_(50)), Poisson's ratio (v), strength ratio (UCS/BTS), and modulus ratio (E_(50)/UCS) were carried out by the statistical analysis of variance (ANOVA). The results of analyses reveal that primary factors and their interactions that affect the mesoscale mechanical parameters are different. Three regression equations from the following ranges: UCS (4.26 ~ 71.11 MPa), BTS (0.30 ~ 11.39 MPa), and E_(50) (1.26 ~ 23.75 GPa) are proposed to capture the relationship between the UCS, BTS and E_(50) of a specimen and its significant microproperties. A flow chart for the efficient determination of a rock microproperties using PFC2D is also suggested in this paper.

英文摘要

本研究探討顆粒流程式微觀參數與其模擬所得介觀力學特性關係,利用實驗設計法搭配直交表進行因子配置,透過PFC模擬獲得單軸壓縮強度、巴西抗張強度、楊氏模數、及泊松比,並計算獲得模數比與強度比,據以進行變異數分析,釐清不同微觀參數及其間的交互作用對於模擬所得介觀力學特性的影響。研究結果顯示,影響試體介觀力學參數的主要顯著微觀參數及交互作用項各不相同。本研究建立試體介觀力學參數與微觀參數的複迴歸關係式,據以提出一套決定微觀參數的系統方法,對於單壓強度介於4.26~71.11 MPa、巴西抗張強度0.30~11.39 MPa、楊氏模數1.26~23.75 GPa的試體,可以提供快速有效選擇微觀參數的依循。

主题分类 工程學 > 土木與建築工程
工程學 > 水利工程
工程學 > 市政與環境工程
参考文献
  1. Abdelaziz, A.,Zhao, Q.,Grasselli, G.(2018).Grain based modelling of rocks using the combined finite-discrete element method.Computers and Geotechnics,103,73-81.
  2. Ajamzadeh, M. R.,Sarfarazi, V.,Haeri, H.,Dehghani, H.(2018).The effect of micro parameters of PFC software on the model calibration.Smart Structures and Systems,22(6),643-662.
  3. Bahrani, N.,Kaiser, P. K.(2016).Numerical investigation of the influence of specimen size on the unconfined strength of defected rocks.Computers and Geotechnics,77,56-67.
  4. Castro-Filgueira, U.,Alejano, L. R.,Arzúa, J.,Mas Ivars, D.(2017).Sensitivity analysis of the micro-parameters used in a PFC analysis towards the mechanical properties of rocks.Procedia Engineering,191,488-495.
  5. Chen, P. Y.(2017).Effects of microparameters on macroparameters of flat-jointed bonded-particle materials and suggestions on trial-and-error method.Geotechnical and Geological Engineering,35,663-677.
  6. Chiu, C. C.,Weng, M. C.(2019).Simulating interface characteristics by using a particular interface model of a discrete element method.Computers and Geotechnics,109,1-11.
  7. Cho, N.,Martin, C. D.,Sego, D. C.(2007).A clumped particle model for rock.International Journal of Rock Mechanics and Mining Sciences,44,997-1010.
  8. Haeri, H.,Sarfarazi, V.,Zhu, Z.,Lazemi, H. A.(2018).Investigation of the effects of particle size and model scale on the UCS and shear strength of concrete using PFC2D.Structural Engineering and Mechanics,67,505-516.
  9. Itasca(2004).Itasca, PFC2D (Particle Flow Code in 2 Dimensions) Version 3.1, Minneapolis (2004)..
  10. Ivars, DM,Pierce, ME,Darcel, C,Reyes-Montes, J,Potyondy, DO,Young, RP,Cundall, PA(2011).The synthetic rock mass approach for jointed rock mass modelling.International Journal of Rock Mechanics and Mining Sciences,48(2),219-244.
  11. Lee, H. W.,Jeon, S. K.(2011).An experimental and numerical study of fracture coalescence in pre-cracked specimens under uniaxial compression.International Journal of Solids and Structures,48,979-999.
  12. Li, K. H.,Cheng, Y. M.,Fan, X.(2018).Roles of model size and particle size distribution on macro-mechanical properties of Lac du Bonnet granite using flat-joint model.Computers and Geotechnics,103,43-60.
  13. Lin, B. Q.,Shen, C. M.(2015).Coal permeability-improving mechanism of multilevel slotting by water jet and application in coal mine gas extraction.Environmental Earth Sciences,73,5975-5986.
  14. Liu, S. Y.,Jiang, H. X.,Gao, K. D.(2013).Simulation of coal mechanical characteristics with discrete element method.Advanced Materials Research,671-674,117-121.
  15. Liu, T.,Lin, B. Q.,Zou, Q. L.,Zhu, C. J.,Guo, C.,Li, J.(2015).Investigation on mechanical properties and damage evolution of coal after hydraulic slotting.Journal of Natural Gas Science and Engineering,24,489-499.
  16. Potyondy, D. O.(2012).A flat-jointed bonded-particle material for hard rock.46th US Rock Mechanics/Geomechanics Symposium
  17. Potyondy, D. O.,Cundall, P. A.(2004).A bonded-particle model for rock.International Journal of Rock Mechanics and Mining Sciences,41,1329-1364.
  18. Ribeiro, P.,Oliveira, M. M.,Nelson, P.(2016).Correlation between uniaxial compressive strength and Brazilian tensile strength using different rock types.XVIII Brazilian Conference on Soil Mechanics and Geotechnical Engineering 2016
  19. Rostami, J.,Kahraman, S.,Yu, X.,Copur, H.,Balci, C.,Bamford, W.,Asbury, B.(2016).The relation between uniaxial compressive and Brazilian tensile strength.ISRM International Symposium-EUROCK
  20. Saadat, M.,Taheri, A.(2019).Modelling micro-cracking behaviour of pre-cracked granite using grain-based distinct element model.Rock Mechanics and Rock Engineering,52,4669-4692.
  21. Saadat, M.,Taheri, A.(2019).A numerical approach to investigate the effects of rock texture on the damage and crack propagation of a pre-cracked granite.Computers and Geotechnics,111,89-111.
  22. Sun, W.,Wu, S. C.,Zhou, Y.,Zhou, J. X.(2019).Comparison of crack processes in single-flawed rock-like material sing two bonded–particle models under compression.Arabian Journal of Geosciences,12,156.
  23. Vallejos, J. A.,Suzuki, K.,Brzovic, A.,Ivars, D. M.(2016).Application of synthetic rock mass modeling to veined core-size samples.International Journal of Rock Mechanics and Mining Sciences,81,47-61.
  24. Wang, H. J.,Ren, X. H.,Tao, R. R.(2011).Identification methods of the deformation memory effect in the stress region above crack initiation threshold.Procedia Engineering,26,1756-1764.
  25. Wang, X.,Wen, Z. J.,Jiang, Y. J.(2016).Time–space effect of stress field and damage evolution law of compressed coal-rock.Geotechnical and Geological Engineering,34,1933-1940.
  26. Wen, Z. J.,Wang, X.,Chen, L. J.,Lin, G.,Zhang, H. L.(2017).Size effect on acoustic emission characteristics of coal-rock damage evolution.Advances in Materials Science and Engineering,2,1-8.
  27. Wong, L. N. Y.,Zhang, X. P.(2014).Size effects on cracking behavior of flaw-containing specimens under compressive loading.Rock Mechanics and Rock Engineering,47,1921-1930.
  28. Wu, S. C.,Xu, X. L.(2016).A study of three intrinsic problems of the classic discrete element method using flat-joint model.Rock Mechanics and Rock Engineering,49,1813-1830.
  29. Xi, Y.,Li, J.,Liu, G. H.,Guo, X. L.(2017).Mechanical properties and acoustic emission properties of rocks with different transverse scales.Shock and Vibration,2,1-8.
  30. Xi, Y.,Li, J.,Zeng, Y. J.,Ding, S. D.,Jiang, T. X.(2018).Research on lateral scale effect and constitutive model of rock damage energy evolution.Geotechnical and Geological Engineering,36,2415-2424.
  31. Yoon, J. S.(2007).Application of experimental design and optimization to PFC model calibration in uniaxial compression simulation.International Journal of Rock Mechanics and Mining Sciences,44,871-889.
  32. Zhang, X. P.,Wong, L. N. Y.(2013).Loading rate effects on cracking behavior of flaw-contained specimens under uniaxial compression.International Journal of Fracture,180,93-110.
  33. Zhang, X. P.,Zhang, Q.,Wu, S. C.(2017).Acoustic emission characteristics of the rock-like material containing a single flaw under different compressive loading rates.Computers and Geotechnics,83,83-97.
  34. Zhao, T. B.,Guo, W. Y.,Tan, Y. L.,Yu, F. H.,Huang, B.,Zhang L. S.(2017).Failure mechanism of layer-crack rock models with different vertical fissure geometric configurations under uniaxial compression.Advances in Mechanical Engineering,9(11),1-15.
  35. Zhao, Y.,Yang, T. H.,Yu, Q. L.,Zhang, P. H.(2018).Analysis of pre-existing crack propagation process based on discrete element method.Journal of Northeastern University Natural Science,39(7),1038-1043.
  36. Zhou, Y.,Wu, S. C.,Jiao, J. J.,Zhang, X. P.(2011).Research on mesomechanical parameters of rock and soil mass based on BP neural network.Rock and Soil Mechanics,32(12),3821-3826.