题名

以天候窗模式預測台灣離岸風機安裝工期之研究-以允能雲林離岸風場為例

并列篇名

WEATHER WINDOW BASED INSTALLATION SCHEDULE SIMULATION MODEL FOR TAIWAN OFF-SHORE WIND TURBINE CONSTRUCTION PROJECT - A CASE STUDY OF THE YULIN OFF-SHORE WIND FARM

DOI

10.6652/JoCICHE.202305_35(3).0008

作者

邱祖賢(Tsu-Hsien Chiu);劉人豪(Jen-Hao Liu);郭斯傑(Sy-Jye Guo);曾惠斌(Hui-Ping Tserng)

关键词

天候影響 ; 離岸風機安裝 ; 可工作天候窗 ; 需求工作窗 ; weather impact ; offshore wind turbine installation ; available working window ; required working window

期刊名称

中國土木水利工程學刊

卷期/出版年月

35卷3期(2023 / 05 / 01)

页次

319 - 329

内容语文

繁體中文;英文

中文摘要

離岸風電之開發是目前臺灣推展綠能與永續發展的重要関鍵項目。本研究提出可工作天候窗與需求工作窗的概念,結合歐洲離岸風場的實際安裝經驗及台灣海峽的風浪氣象資料,建立一個離岸風機安裝工期的模擬模式。本研究以2012至2020年的風速及浪高資料進行分析,推導出允能雲林離岸風場最佳開工時間為2月區間,最適合安裝風機的月分區間則集中於4月中至10月初。本研究之成果有助於離岸風機廠商選擇更有效的出航月份及載運策略,提高施工效率並落實工進,改善目前進度延遲之困境,並提供未來其它離岸風場開發之參考依據。

英文摘要

Developing offshore wind power is a crucial initiative for Taiwan to promote sustainable development and green energy. This study proposes the concepts of "available weather window" and "required working window," and establishes a model to simulate the installation period of offshore wind turbines by combining the work experience of European offshore wind farms with the historical climatic record of wind and wave in the Taiwan Strait. The study analyzes wind speed and wave height data from 2012 to 2020 and deduces that the optimal start time for the Yunlin offshore wind farm is in February, with the most suitable month for installing wind turbines concentrated from mid-April to early October. These results are helpful for offshore wind turbine builders in determining the best time to sail and the most effective transportation strategy to improve construction efficiency and alleviate delays. The findings can also serve as a reference for future studies and the development of other offshore wind farms.

主题分类 工程學 > 土木與建築工程
工程學 > 水利工程
工程學 > 市政與環境工程
参考文献
  1. 郭斯傑,陳榮興,邱佳欣(2017)。陸上風力發電機組興建工程受風不確定性因素影響之工期預測模式。中國土木水利工程學刊,29(2),109-117。
    連結:
  2. Guo, S. J.(2000).Computer-aided project duration forecasting subjected to the impact of rain.Computer-Aided Civil and Infrastructure Engineering,15,67-74.
  3. Guo, S.,Chen, J.,Chiu, C.(2017).Fuzzy duration forecast model for wind turbine construction project subject to the impact of wind uncertainty.Automation in Construction,81,401-410.
  4. Kaiser, M. J.,Snyder, B. F.(2014).Offshore wind energy cost modeling: Installation and decommissioning.London:Springer London.
  5. Lacal-Arántegui, R.,Yusta, J. M.,DomínguezNavarro, J. A.(2018).Offshore wind installation: Analyzing the evidence behind improvements in installation time.Renewable and Sustainable Energy Reviews,92,133-145.
  6. Maples, B.,Saur, G.,Hand, M.,Pieterman, R. V.,Obdam, T.(2013).NREL ReportNREL Report,Denver, United States.
  7. Paterson, J.,D’Amico, F.,Thies, P.,Kurt, R.,Harrison, G.(2018).Offshore wind installation vessels–A comparative assessment for UK offshore rounds 1 and 2.Ocean Engineering,148,637-649.
  8. Uraz, E.(2011).Sweden,Gotland University.
  9. Vis, I. F.,Ursavas, E.(2016).Assessment approaches to logistics for offshore wind energy installation.Sustainable Energy Technologies and Assessments,14,80-91.
  10. 李嶽能(1997)。臺北,國立臺灣大學土木工程研究所。
  11. 連日新(2011)。臺北,國立臺灣大學土木工程研究所。
  12. 劉人豪(2019)。臺北,國立臺灣大學土木工程研究所。