题名

應用Google Earth Engine與FwDET-GEE產生淹水地圖-以台南市、嘉義縣及屏東縣為例

并列篇名

USING GOOGLE EARTH ENGINE AND FWDET-GEE TO GENERATE FLOOD MAPS - TAINAN CITY, CHIAYI COUNTY, AND PINGTUNG COUNTY AS EXAMPLES

DOI

10.6652/JoCICHE.202310_35(6).0007

作者

陳立凡(Li Fan Chen);楊尊華(Tsun-Hua Yang)

关键词

Google Earth Engine ; 淹水地圖 ; 衛星影像 ; Google Earth Engine ; inundation maps ; satellite images

期刊名称

中國土木水利工程學刊

卷期/出版年月

35卷6期(2023 / 10 / 01)

页次

595 - 603

内容语文

繁體中文;英文

中文摘要

淹水地圖在本研究中定義為真實洪災事件中受影響的範圍與淹水深度。這樣的資訊不但幫助災害管理機構和地方居民應對區域的淹水風險,同時也提供保險單位制定洪水保險費率與理賠參考之依據。本研究透過Google Earth Engine(GEE)擷取合成孔徑雷達衛星影像判斷淹水範圍,接著使用FwDET-GEE模式估計範圍內之淹水深度。本研究先比較前人相關之研究結果,確認上述工具整合之正確性,再透過台南市、嘉義縣與屏東縣之歷史淹水事件進行驗證。以2021年7月豪雨事件為例,本模式台南市與屏東縣淹水預測範圍與觀測結果之偵測率有接近60%以上,而在2018年8月嘉義縣掌潭村之案例中,本研究之模擬淹水深度結果與觀測值均方根誤差則為0.713公尺。綜合上述結果,本研究整合GEE衛星影像與FwDET-GEE模式、快速推估都市淹水範圍與深度,未來可以提供臺灣相關單位提升都市淹水地圖資訊判定之準確性與時效性。

英文摘要

Inundation maps are defined in this study as the area affected and the depth of inundation during a real flood event. This information helps disaster management organizations and local residents to cope with the inundation risk of the area, and provides a reference for insurance companies to set flood insurance rates and claims. This study acquired the synthetic aperture radar (SAR) satellite images from Google Earth Engine to determine the inundation area, and then applied FwDET-GEE to estimate the inundation depth within the area. This study compares the results of previous studies to confirm the correctness of the integration of the above tools, and then verifies the results through the historical flooding events in Tainan City, Chiayi County, and Pingtung County. This study shows that the Probability of Detection (POD) of Tainan City and Pingtung County are close to 60% and above, while the root mean square error (RMSE) of Chiayi County is 0.713 meters, which demonstrates promising potential of applying this study to the determination of urban inundation mapping in Taiwan in the future.

主题分类 工程學 > 土木與建築工程
工程學 > 水利工程
工程學 > 市政與環境工程
参考文献
  1. 邱俊穎,謝嘉聲,黃宗仁,葉堃生,管立豪,胡植慶(2019)。合成孔徑雷達影像於颱風豪雨後淹水之偵測。Journal of Photogrammetry and Remote Sensing,24(4),211-222。
    連結:
  2. 全國法規資料庫,山坡地土地可利用限度分類標準(2020)。
  3. Amitrano, D.,Di Martino, G.,Iodice, A.,Riccio, D.,Ruello, G.(2018).Unsupervised rapid flood mapping using Sentinel-1 GRD SAR images.IEEE Transactions on Geoscience and Remote Sensing,56(6),3290-3299.
  4. Canty, M. J.,Nielsen, A. A.,Conradsen, K.,Skriver, H.(2019).Statistical analysis of changes in Sentinel-1 time series on the Google Earth Engine.Remote Sensing,12(1),46.
  5. Cohen, S.,Brakenridge, G. R.,Kettner, A.,Bates, B.,Nelson, J.,McDonald, R.,Huang, Y. F.,Munasinghe, D.,Zhang, J.(2018).Estimating floodwater depths from flood inundation maps and topography.JAWRA Journal of the American Water Resources Association,54(4),847-858.
  6. Cohen, S.,Raney, A.,Munasinghe, D.,Loftis, J. D.,Molthan, A.,Bell, J.,Laura, R.,Galantowicz, J.,Brakeridge, G. R.,Kettner, A. J.,Huang, Y. F.,Tsang, Y. P.(2019).The Floodwater Depth Estimation Tool (FwDET v2. 0) for improved remote sensing analysis of coastal flooding.Natural Hazards and Earth System Sciences,19(9),2053-2065.
  7. Coughlan de Perez, E.,Van den Hurk, B.,Van Aalst, M. K.,Amuron, I.,Bamanya, D.,Hauser, T.,Jongma, B.,Lopez, A.,Mason, S.,Mendler de Suzrez, J.,Pappenberger, F.,Rueth, A.,Stephens, E.,Suarez, P.,Wagemaker, J.,Zsoter, E.(2016).Action-based flood forecasting for triggering humanitarian action.Hydrology and Earth System Sciences,20(9),3549-3560.
  8. Cunjian, Y.,Siyuan, W.,Zengxiang, Z.,Shifeng, H.(2001).Extracting the flood extent from satellite SAR image with the support of topographic data.Proceedings of International Conferences on Info-Tech and Info-Net.
  9. Farr, T. G.,Rosen, P. A.,Caro, E.,Crippen, R.,Duren, R.,Hensley, S.,Kobrick, M.,Paller, M.,Rodriguez, E.,Roth, L.,Seal, D.,Shaffer, S.,Shimada, J.,Umland, J.,Werner, M.,Oskin, M.,Burbank, D.,Alsdorf, D.(2007).The shuttle radar topography mission.Reviews of Geophysics,45(2)
  10. IPCC,Pörtner, H.-O.(ed.),Roberts, D.C.(ed.),Tignor, M.(ed.),Poloczanska, E.S.(ed.),Mintenbeck, K.(ed.),Alegría, A.(ed.),Craig, M.(ed.),Langsdorf, S.(ed.),Löschke, S.(ed.),Möller, V.(ed.),Okem, A.(ed.),Rama, B.(ed.)(2022).Climate Change 2022: Impacts, Adaptation, and Vulnerability, Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change.Cambridge, UK:Cambridge University Press.
  11. Islam, M. T.,Meng, Q.(2022).An exploratory study of Sentinel-1 SAR for rapid urban flood mapping on Google Earth Engine.International Journal of Applied Earth Observation and Geoinformation,113,103002.
  12. Jo, M. J.,Osmanoglu, B.,Zhang, B.,Wdowinski, S.(2018).Flood extent mapping using dual-polarimetric Sentinel-1 synthetic aperture radar imagery.Department of Earth and Environment,78
  13. Joyce, K. E.,Belliss, S. E.,Samsonov, S. V.,McNeill, S. J.,Glassey, P. J.(2009).A review of the status of satellite remote sensing and image processing techniques for mapping natural hazards and disasters.Progress in Physical Geography,33(2),183-207.
  14. Lee, J. S.(1983).A simple speckle smoothing algorithm for synthetic aperture radar images.IEEE Transactions on Systems, Man, and Cybernetics,1,85-89.
  15. Li, J.,Ma, R.,Cao, Z.,Xue, K.,Xiong, J.,Hu, M.,Feng, X.(2022).Satellite detection of surface water extent: A review of methodology.Water,14(7),1148.
  16. Liu, B.,Li, X.,Zheng, G.(2019).Coastal inundation mapping from bitemporal and dual‐polarization SAR imagery based on deep convolutional neural networks.Journal of Geophysical Research: Oceans,124(12),9101-9113.
  17. Luke, A.,Sanders, B. F.,Goodrich, K. A.,Feldman, D. L.,Boudreau, D.,Eguiarte, A.,Serrano, K.,Reyes, A.,Schubert, J. E.,AghaKouchak, A.,Basolo, V.,Matthew, R. A.(2018).Going beyond the flood insurance rate map: insights from flood hazard map co-production.Natural Hazards and Earth System Sciences,18(4),1097-1120.
  18. Manavalan, R.(2017).SAR image analysis techniques for flood area mapping-literature survey.Earth Science Informatics,10(1),1-14.
  19. Market, K. N.,Market, A. M.,Mayer, T.,Nauman, C.,Haag, A.,Poortinga, A.,Bhandari, B.,Thwal, N. S.,Kunlamai, T.,Chishtie, F.,Kwant, M.,Phongsapan, K.,Clinton, N.,Towashiraporn, P.,Saah, D.(2020).Comparing sentinel-1 surface water mapping algorithms and radiometric terrain correction processing in southeast Asia utilizing google earth engine.Remote Sensing,12(15),2469.
  20. Mudashiru, R. B.,Sabtu, N.,Abustan, I.,Balogun, W.(2021).Flood hazard mapping methods: A review.Journal of hydrology,603,126846.
  21. Notti, D.,Giordan, D.,Caló, F.,Pepe, A.,Zucca, F.,Galve, J. P.(2018).Potential and limitations of open satellite data for flood mapping.Remote Sensing,10(11),1673.
  22. Pekel, J. F.,Cottam, A.,Gorelick, N.,Belward, A. S.(2016).High-resolution mapping of global surface water and its long-term changes.Nature,540(7633),418-422.
  23. Peter, B. G.,Cohen, S.,Lucey, R.,Munasinghe, D.,Raney,Brakenridge, G. R.(2022).Google Earth Engine Implementation of the Floodwater Depth Estimation Tool (FwDET-GEE) for Rapid and Large Scale Flood Analysis.IEEE Geoscience and Remote Sensing Letters,19,1-5.
  24. Petrie, G. M.,Wukelic, G. E.,Kimball, C. S.,Steinmau, K. L.,Beaver, D. E.(1994).Responsiveness of satellite remote sensing and image processing technologies for monitoring and evaluating 1993 Mississippi River flood development using ERS-1 SAR, LANDAST, and SPOT digital data.Proceeding of the ASPRS/ACSM,Reno, NV:
  25. Sivanpillai, R.,Jacobs, K. M.,Mattilio, C. M.,Piskorski, E. V.(2021).Rapid flood inundation mapping by differencing water indices from pre-and post-flood Landsat images.Frontiers of Earth Science,15,1-11.
  26. Surampudi, S.,Kumar, V.(2023).Flood depth estimation in agricultural lands from l and c-band synthetic aperture radar images and digital elevation model.IEEE Access,11,3241-3256.
  27. Teng, J.,Penton, D. J.,Ticehurst, C.,Sengupta, A.,Freebairn, A.,Marvanek, S.,Vaze, J.,Gibbs, M.,Streeton, N.,Karim, F.,Morton, S.(2022).A comprehensive assessment of floodwater depth estimation models in semiarid regions.Water Resources Research,58(11)
  28. Twele, A.,Cao, W.,Plank, S.,Martinis, S.(2016).Sentinel1-based flood mapping: A fully automated processing chain.International Journal of Remote Sensing,37(13),2990-3004.
  29. Uddin, K.,Matin, M. A.,Meyer, F. J.(2019).Operational flood mapping using multi-temporal Sentinel-1 SAR images: A case study from Bangladesh.Remote Sensing,11(13),1581.
  30. Vanama, V. S. K.,Mandal, D.,Rao, Y. S.(2020).GEE4FLOOD: rapid mapping of flood areas using temporal Sentinel-1 SAR images with Google Earth Engine cloud platform.Journal of Applied Remote Sensing,14(3),034505-034505.
  31. Yang, T. H.,Chen, Y. C.,Chang, Y. C.,Yang, S. C.,Ho, J. Y.(2015).Comparison of different grid cell ordering approaches in a simplified inundation model.Water,7(2),438-454.
  32. Yang, X.,Zhao, S.,Qin, X.,Zhao, N.,Liang, L.(2017).Mapping of urban surface water bodies from Sentinel-2 MSI imagery at 10 m resolution via NDWI-based image sharpening.Remote Sensing,9(6),596.
  33. Zhang, J.,Huang, Y. F.,Munasinghe, D.,Fang, Z.,Tsang, Y. P.,Cohen, S.(2018).Comparative analysis of inundation mapping approaches for the 2016 flood in the Brazos River, Texas.JAWRA Journal of the American Water Resources Association,54(4),820-833.
  34. 內政部消防署全球資訊網,臺灣地區天然災害損失統計表, https://www.nfa.gov.tw/cht/index.php?code=list&ids=233 (2023 年 7 月 1 日擷取)。
  35. 台北市政府消防局,臺北市預防淹水緊急應變措施標準作業程序 (2019)。
  36. 江介倫,劉俊志(2011)。衛星影像於臺灣地區淹水範圍判釋應用之可行性評估。Journal of Science and Engineering Technology,7(4),1-7。
  37. 行政院研究發展考核委員會(2011)。,未出版
  38. 災害防救辦公室,0823 熱帶低壓水災應變處置作為(2023)。
  39. 林又青,何瑞益,王俞婷,傅鏸漩,梁庭語,施虹如,李威霖,陳珮琦,林聖琪,呂喬茵,朱崇銳,李士強,劉哲欣,張志新(2021)。,行政法人國家災害防救科技中心。
  40. 鄭兆尊,姜欣妤,林秉毅,簡毓瑭,蘇世顥(2022)。,行政法人國家災害防救科技中心。
  41. 賴子銘,史天元(2006)。SRTM/TOPSAR 高程數據比對。Journal of Photogrammetry and Remote Sensing,11(4),447-459。