题名

應用HEC-RAS推估桶後溪烏來流量站之遷移範圍

并列篇名

APPLICATION OF HEC-RAS TO ESTIMATE THE MIGRATION RANGE OF WULAI FLOW GAUGE STATION ON THE TONGHOU RIVER

DOI

10.6652/JoCICHE.202310_35(6).0008

作者

陳彥璋(Yen-Chang Chen);楊翰宗(Han-Chung Yang);陳彥慈(Yen-Tzu Chen)

关键词

迴水 ; 頻率分析 ; 二維水理分析 ; 水利防災 ; backwater ; frequency analysis ; two-dimensional hydraulic analysis ; water hazard mitigation

期刊名称

中國土木水利工程學刊

卷期/出版年月

35卷6期(2023 / 10 / 01)

页次

605 - 614

内容语文

繁體中文;英文

中文摘要

烏來區位於新北市南端,為新北市面積最大之行政區。民國104年蘇迪勒颱風在烏來降下了1小時95毫米的強降雨,重創烏來地區。蘇迪勒颱風過後,烏來橋新增了流量站,用來推估桶後溪的流量,但是烏來橋容易因為桶後溪與南勢溪匯流產生的迴水,造成流量-水位率定曲線的不穩定。因而,本研究目的旨在透過南勢溪流量資料運用頻率分析推估不同重現期之洪峰流量,進而推估桶後溪之洪峰流量,再使用HEC-RAS二維水理分析,探討桶後溪在重現期200年下之最遠迴水範圍。研究分析結果顯示,桶後溪流量在重現期200年下,其迴水範圍大約在烏來橋往上游300公尺處(烏來國中旁)。其分析結果亦可知,主支流的流量差異大小,影響支流迴水範圍甚深。主支流流量差異越大,支流受到的迴水範圍越大,反之,主支流流量差異越小,支流受到的迴水範圍越小。本研究除了能在洪患災害上進行防範,也能對水利建設提供可信的應用數據。

英文摘要

Wulai District is located at the southern tip of New Taipei City and is the largest administrative district in New Taipei City. In 2015, Typhoon Soudelor dropped 95 mm of heavy rainfall in Wulai for 1 hour, severely damaging the Wulai area. After Typhoon Soudelor, a new discharge station was added to Wulai Bridge to estimate the discharge of Tonghou Creek. However, Wulai Bridge is prone to unstable discharge-stage curves due to the backwater generated by Tonghou Creek's and Nanshi Creek's confluence. Therefore, the purpose of this study is to use frequency analysis to estimate the flood peak discharge in different return periods through the discharge data of the Nanshi Creek, and then estimate the peak discharge of the Tonghou Creek, and then use HEC-RAS two- dimensional hydraulic analysis to explore the farthest backwater range of Tonghou Creek under the return period of 200 years. The results of the research and analysis show that, under the return period of 200 years, the backwater range of Tonghou Creek is about 300 meters upstream from Wulai Bridge (next to Wulai Junior High School). From the analysis results, it can also be seen that the difference in the discharge of the main and tributary streams has a deep impact on the backwater range of the tributary. The more significant the discharge difference between the main and tributary streams, the more extensive the backwater range received by the tributaries; on the contrary, the smaller the discharge difference between the main and tributary streams, the smaller the backwater range received by the tributaries. In addition to preventing flood disasters, this research can provide credible application data for water conservancy construction.

主题分类 工程學 > 土木與建築工程
工程學 > 水利工程
工程學 > 市政與環境工程
参考文献
  1. Aissa, M.(2017).Delft University of Technology.
  2. Alabyan, A. M.,Lebedeva, S. V.(2018).Flow dynamics in large tidal delta of the Northern Dvina River: 2D simulation.Journal of Hydroinformatics,20(4),798-814.
  3. Baptista, A. M.,Zhang, Y.,Chawla, A.,Zulauf, M.,Seaton, C.,Myers, E. P.,Kindle, J.,Wilkin, M.,Burla, M.,Turner, P.(2005).A cross-scale model for 3D baroclinic circulation in estuary-plume-shelf systems: II. Application to the Columbia River.Continental Shelf Research,25(7-8),935-972.
  4. Bates, P. D.,Lane, S. N.,Gerguson, R. I.(2005).Computational Fluid: Dynamics Applications in Environmental Hydraulics.West Sussex England:Wiley.
  5. Chow, V. T.,Maidment, D. R.,Mays, L. W.(1988).Applied Hydrology.Singaproe:McGraw-Hill.
  6. Elger, D. F.,LeBret, B. A.,Crowe, C. T.,Roberson, J. A.(2022).Engineering Fluid Mechanics.Singapore:Wiley.
  7. Hackl, J.,Adey, B.(2019).Impact of UAV photogrammetry on the flood simulation process of bridges in mountain regions.Hydrolink,2029,19-21.
  8. Hidayat, H.,Vermeulen, B.,Sassi, M. G.,Torfs, P. J. J. F.,Hoitink, A. J. F.(2011).Discharge estimation in a backwater affected meandering river.Hydrology and Earth System Sciences,15,2717-2728.
  9. Li, Q.,Peng, Y.,Wang, G.,Wang, H.,Xue, B.,Hu, X.(2019).A combined method for estimating continuous runoff by parameter transfer and drainage area ratio method in ungauged catchments.Water,11(5),1104.
  10. Malik, S.,Pal, S. C.(2020).Application of 2D numerical simulation for rating curve development and inundation area mapping: A case study of monsoon dominated Dwarkeswar river.International Journal of River Basin Management,19(4),553-563.
  11. Mandlburger, G.,Hauer, C.,Höfle, B.,Habersack, H.,Pfeifer, N.(2009).Optimisation of LiDAR derived terrain models for river flow modelling.Hydrology and Earth System Sciences,13,1453-1466.
  12. Meade, R. H.,Rayol, J. M.,Da Conceicão, S. C.,Natividade, J. R. G.(1991).Backwater effects in the Amazon River basin of Brazil.Environmental Geology and Water Sciences,18,105-114.
  13. Milbradt, Peter,Abed, Wassim Abu(2008).Generalized stabilization techniques in computational fluid dynamics.Proceedings of the 8th International Conference on Hydro-Science and Engineering, ICHE 2008,Nagoya, Japan. Nagoya:
  14. Parsapour-Moghaddam, P.,Rennie, C. D.(2018).Calibration of a 3D hydrodynamic meandering river model using fully spatially distributed 3D ADCP velocity data.Journal of Hydraulic Engineering,144(4),04018010.
  15. Pinos, J.,Timbe, L.,Timbe, E.(2019).Evaluation of 1D hydraulic models for the simulation of mountain fluvial floods: a case study of the Santa Bárbara River in Ecuador.Water Practice and Technology,14(2),341-354.
  16. Rantz, S. E.(1982).Geological Survey Water-Supply PaperGeological Survey Water-Supply Paper,Washington, DC:United States Government Printing Office.
  17. Saleh, F.,Ducharne, A.,Flipp, N.,Ludin, L.,Ledoux, E.(2013).Impact of river bed morphology on discharge and water levels simulated by a 1D Saint-Venant hydraulic model at regional scale.Journal of Hydrology,476(7),169-177.
  18. Samuels, P. G.(1989).Backwater lengths in rivers.Proceedings of the Institution of Civil Engineers,87(4),571-582.
  19. Sturges, H. A., “The choice of a class interval,” Journal of the American Statistical Association, Vol. 21, No. 153, pp. 65-66 (1926).
  20. 陳彥璋,游勝任,楊翰宗(2012)。南勢溪攬勝橋流量與泥沙量測及率定曲線建置之研究。台灣水利,60(4),99-108。
  21. 經濟部水利署第十河川局(2017)。經濟部水利署第十河川局,淡水河水系新店溪治理規劃檢討 (覽勝大橋至碧潭堰),經濟部水利署第十河川局,板橋 (2017)。
  22. 經濟部水利署臺北水源特定區管理局(2022)。經濟部水利署臺北水源特定區管理局,111-112 年度臺北水源特定區水文監測計畫 (1/2) 期中報告,經濟部水利署臺北水源特定區管理局,台北 (2022)。
  23. 經濟部水利署臺北水源特定區管理局(2023)。經濟部水利署臺北水源特定區管理局,111-112 年度臺北水源特定區水文監測計畫 (2/2) 期中報告,經濟部水利署臺北水源特定區管理局,台北 (2023)。
  24. 經濟部水資源局(2001).水文設計應用手冊.經濟部水利署.