题名

灌排不完全分離下水中懸浮固體是造成農田土壤重金屬累積的主要來源-以台灣彰化為例

并列篇名

THE SUSPENDED SOLID INDUCED IMPACT ON FARMLAND SOIL HEAVY METAL ACCUMULATION IN A DRAINAGE-CONVERGED IRRIGATION CHANNEL-IN CHANGHUA COUNTY, TAIWAN

DOI

10.6652/JoCICHE.202311_35(7).0010

作者

林淳純(Chun-Chun Lin);駱尚廉(Shang-Lien Lo)

关键词

農田土壤 ; 重金屬 ; 懸浮固體 ; 污染特徵 ; 引排水灌溉 ; heavy metals ; agricultural soil ; suspended solids ; pollution characteristics ; drainage-irrigated

期刊名称

中國土木水利工程學刊

卷期/出版年月

35卷7期(2023 / 11 / 01)

页次

731 - 742

内容语文

繁體中文;英文

中文摘要

自105年環保署對重點河段與農田引灌水源進行總量管制,並耗費20年完成全國農地污染改善,至今,水中重金屬已受到控制,定監數據卻發現農田土壤重金屬有增量。為避免污染再發生,本研究應用污染特徵、懸浮固體攔留器及所攔截的懸浮固體評估重金屬的輸入途徑與移動方式。結果顯示農田土壤與攔留器懸浮固體的重金屬污染特徵與皮爾森相關係數高,表示水中懸浮固體是造成農田土壤重金屬累積的主因。而灌溉水中懸浮固體的濃度隨著水流速度減緩而增加,渠道底泥厚度亦有相同趨勢,推論懸浮固體來自引灌水源,應從源頭管制以減低重金屬造成的可能風險。

英文摘要

After launching the total amount control in 2016 and finalizing a 20-year field pollution reduction program, heavy metal concentrations in the surface water are in control. However, regular monitoring still shows the increment of heavy metal concentrations in agricultural soil. To prevent pollution recurrence, this study aims to identify transportation media and routes of heavy metals by soil pollutant signature and intercepted suspended solids (SS). The result shows the high Pearson correlation coefficients of heavy metal concentrations in agricultural soils and intercepted SS, implying that the heavy metals of SS in irrigation water is the main contribution. Regarding the origin of SS in an irrigation ditch, SS increases while the water velocity decreases. On the other hand, the ditch sediment and SS have the same trend. Sedimentation-resuspension process well explains the relation, which implies the SS originates from the irrigation source. In order to lower the potential risks caused by heavy metals, our results further emphasize the importance of controlling the SS from the source.

主题分类 工程學 > 土木與建築工程
工程學 > 水利工程
工程學 > 市政與環境工程
参考文献
  1. Alonso Castillo, M. L.,Sanchez Trujillo, I.,Vereda Alonso, E.,Garcia de Torres, A.,Cano Pavon, J. M.(2013).Bioavailability of heavy metals in water and sediments from a typical mediterranean bay (malaga bay, region of andalucia, southern Spain).Marine Pollution Bulletin,76,427-434.
  2. Bolan, N.,Kunhikrishnan, A.,Thangarajan, R.,Kumpiene, J.,Park, J.,Makino, T.,Kirkham, M. B.,Scheckel, K.(2014).Remediation of heavy metal(loid)s contaminated soils⎯To mobilize or to immobilize?.Journal of Hazardous Materials,266(4),141-166.
  3. Brent, R. N.,Wines, H.,Luther, J.,Irving, N.,Collins, J.,Drake, B. L.(2017).Validation of handheld X-ray fluorescence for in situ measurement of mercury in soils.Journal of Environmental Chemical Engineering,5(1),768-776.
  4. Burton, E. D.,Phillips, I. R.,Hawker, D. W.(2006).Factors controlling the geochemical partitioning of trace metals in estuarine sediments.Soil and Sediment Contamination,15,253-276.
  5. Chen, R.,Chen, H.,Song, L.,Yao, Z.,Meng, F.,Teng, Y.(2019).Characterization and source apportionment of heavy metals in the sediments of Lake Tai (China) and its surrounding soils.Science of The Total Environment,694,133819.
  6. Chu, H. J.,Lin, Y. P.,Jang, C. S.,Chang, T. K.(2010).Delineating the hazard zone of multiple soil pollutants by multivariate indicator kriging and conditioned Latin hypercube sampling.Geoderma,158(3-4),242-251.
  7. Durán, I.,Sánchez-Marín, P.,Beiras, R.(2012).Dependence of Cu, Pb and Zn remobilization on physicochemical properties of marine sediments.Marine Environmental Research,77,43-49.
  8. FAO and ITPS=Food and Agriculture Organization of the United Nations and Intergovernmental Technical Panel on Soils(2015).Status of the World’s Soil Resources (SWSR) – Main Report.Rome, Italy:
  9. Feng, W.,Guo, Z.,Xiao, X.,Peng, C.,Shi, L.,Ran, H.,Xu, W.(2020).A dynamic model to evaluate the critical loads of heavy metals in agricultural soil.Ecotoxicology and Environmental Safety,197,110607.
  10. Gutiérrez-Ginés, M.,Pastor, J.,Hernández, A.(2013).Assessment of field portable X-ray fluorescence spectrometry for the in situ determination of heavy metals in soils and plants.Environmental Science: Processes and Impacts,15(8),1545-1552.
  11. Huang, Y.,Deng, M.,Wu, S.,Japenga, J.,Li, T.,Yang, X.,He, Z.(2018).A modified receptor model for source apportionment of heavy metal pollution in soil.Journal of Hazardous Materials,354,161-169.
  12. Islam, M. A.,Romić, D.,Akber, M. A.,Romić, M.(2018).Trace metals accumulation in soil irrigated with polluted water and assessment of human health risk from vegetable consumption in Bangladesh.Environmental Geochemistry and Health,40,59-85.
  13. Jones, B.,Turki, A.(1997).Distribution and speciation of heavy metals in surficial sediments from the Tees Estuary, north-east England.Marine Pollution Bulletin,34(10),768-779.
  14. Khan, M. U.,Malik, R. N.,Muhammad, S.(2013).Human health risk from Heavy metal via food crops consumption with wastewater irrigation practices in Pakistan.Chemosphere,93,2230-2238.
  15. Khan, S.,Cao, Q.,Zheng, Y. M.,Huang, Y. Z.,Zhu, Y. G.(2008).Health risks of heavy metals in contaminated soils and food crops irrigated with wastewater in Beijing, China.Environmental Pollution,152,686-692.
  16. Kilbride, C.,Poole, J.,Hutchings, T. R.(2006).A comparison of Cu, Pb, As, Cd, Zn, Fe, Ni and Mn determined by acid extraction/ICP-OES and ex situ field portable X-ray fluorescence analyses.Environmental Pollution,143,16-23.
  17. Li, M.,Hu, Y.,Zhou, N.,Wang, S.,Sun, F.(2022).Hydrothermal treatment coupled with pyrolysis and calcination for stabilization of electroplating sludge: Speciation transformation and environmental risk of heavy metals.Journal of Hazardous Materials,438,129539.
  18. Li, Y.,Feng, X.,Zhou, J.,Zhu, L.(2020).Occurrence and source apportionment of novel and legacy poly/perfluoroalkyl substances in Hai River basin in China using receptor models and isomeric fingerprints.Water Research,168,115145.
  19. Lin, Y. P.,Cheng, B. Y.,Shyu, G. S.,Chang, T. K.(2010).Combining a finite mixture distribution model with indicator kriging to delineate and map the spatial patterns of soil heavy metal pollution in Chunghua County, central Taiwan.Environmental Pollution,158(1),235-244.
  20. Lin, Y. P.,Teng, T. P.,Chang, T. K.(2002).Multivariate analysis of soil heavy metal pollution and landscape pattern in Changhua County in Taiwan.Landscape and Urban Planning,62(1),19-35.
  21. Liu, W.,Yang, Y.,Li, P.,Zhou, Q.,Xie, L.,Han, Y.(2009).Risk assessment of cadmium-contaminated soil on plant DNA damage using RAPD and physiological indices.Journal of Hazardous Materials,161(2),878-883.
  22. MEF, Ministry of the Environment, Finland Government Decree on the Assessment of Soil Contamination and Remediation Needs, 214 (2007).
  23. Melquiades, F. L.,Appoloni, C. R.(2004).Application of XRF and field portable XRF for environmental analysis.Journal of Radioanalytical and Nuclear Chemistry,262,533-541.
  24. Potts, P. J.,Ellis, A. T.,Kregsamer, P.,Streli, C.,Vanhoof, C.,West, M.,Wobrauschek, P.(2005).Atomic spectrometry update. X-ray fluorescence spectrometry.Journal of Analytical Atomic Spectrometry,20,1124-1154.
  25. Qureshi, A. S.,Hussain, M. I.,Ismail, S.,Khan, Q. M.(2016).Evaluating heavy metal accumulation and potential health risks in vegetables irrigated with treated wastewater.Chemosphere,163,54-61.
  26. Römkens, P. F.,Guo, H. Y.,Chu, C. L.,Liu, T. S.,Chiang, C. F.,Koopmans, G. F.(2009).Characterization of soil heavy metal pools in paddy fields in Taiwan: Chemical extraction and solid-solution partitioning.Journal of Soils and Sediments,9(3),216-228.
  27. Shand, C. A.,Wendler, R.(2014).Portable X-ray fluorescence analysis of mineral and organic soils and the influence of organic matter.Journal of Geochemical Exploration,143,31-42.
  28. Sharma, B.,Sarkar, A.,Singh, P.,Singh, R.P.(2017).Agricultural utilization of biosolids: A review on potential effects on soil and plant grown.Waste Management,64,117-132.
  29. Sharma, R. K.,Agrawal, M.,Marshall, F.(2007).Heavy metal contamination of soil and vegetables in suburban areas of Varanasi, India.Ecotoxicology and Environmental Safety,66,258-266.
  30. Srivastava, V.,Araujo, A. S. F.,Vaish, B.,Bartelt-Hunt, S.,Singh, P.,Singh, R. P.(2016).Biological response of using municipal solid waste compost in agriculture as fertilizer supplement.Reviews in Environmental Science and Bio/Technology,15,677-696.
  31. Superville, P. J.,Prygiel, E.,Magnier, A.,Lesven, L.,Gao, Y.,Baeyens, W.,Ouddane, B.,Dumoulin, D.,Billon, G.(2014).Daily variations of Zn and Pb concentrations in the Deûle River in relation to the resuspension of heavily polluted sediments.Science of The Total Environment,470-471,600-607.
  32. Tóth, G.,Hermann, T.,Da Silva, M. R.,Montanarella, L.(2016).Heavy metals in agricultural soils of the European Union with implications for food safety.Environmental Pollution,88,299-309.
  33. USEPA=United States Environmental Protection Agency(1992).,未出版
  34. USEPA=United States Environmental Protection Agency(2008).Handbook for Developing Watershed TMDLs.Washington D.C.:Office of Wetlands, Oceans and Watersheds, U. S. Environmental Protection Agency.
  35. Van Ryssen, R.,Leermakers, M.,Baeyens, W.(1999).The mobilisation potential of trace metals in aquatic sediments as a tool for sediment quality classification.Environmental Science & Policy,2(1),75-86.
  36. Vareda, J. P.,Valente, A. J. M.,Dur˜aes, L.(2019).Assessment of heavy metal pollution from anthropogenic activities and remediation strategies: a review.Journal of Environmental Management,246,101-118.
  37. Wang, A. T.,Wang, Q.,Li, J.,Yuan, G. L.,Albanese, S.,Petrik, A.(2019).Geo-statistical and multivariate analyses of potentially toxic elements’ distribution in the soil of Hainan Island (China): a comparison between the topsoil and subsoil at a regional scale.Journal of Geochemical Exploration,197,48-59.
  38. Wang, S.,Cai, L. M.,Wen, H. H.,Luo, J.,Wang, Q. S.,Liu, X.(2019).Spatial distribution and source apportionment of heavy metals in soil from a typical county-level city of Guangdong Province, China.Science of The Total Environment,655,92-101.
  39. Weindorf, D. C.,Paulette, L.,Man, T.(2013).In-situ assessment of metal contamination via portable X-ray fluorescence spectroscopy: Zlatna, Romania.Environmental Pollution,182,92-100.
  40. Weindorf, D. C.,Zhu, Y.,McDaniel, P.,Valerio, M.,Lynn, L.,Michaelson, G.,Clark, M.,Ping, C. L.(2012).Characterizing soils via portable x-ray fluorescence spectrometer: 2. Spodic and Albic horizons.Geoderma,189-190,268-277.
  41. Woldetsadik, D.,Drechsel, P.,Keraita, B.,Itanna, F.,Gebrekidan, H.(2017).Heavy metal accumulation and health risk assessment in wastewater-irrigated urban vegetable farming sites of Addis Ababa, Ethiopia.International Journal of Food Contamination,4,9.
  42. Yu, Y.,Huang, Q.,Zhou, J.,Wu, Z.,Deng, H.,Liu, X.,Lin, Z.(2021).One-step extraction of high-purity CuCl2·2H2O from copper-containing electroplating sludge based on the directional phase conversion.Journal of Hazardous Materials,413,125469.
  43. Yuan, F.,Wei, Y. D.,Gao, J.,Chen, W.(2019).Water crisis, environmental regulations and location dynamics of pollution-intensive industries in China: A study of the Taihu Lake watershed.Journal of Cleaner Production,216,311-322.
  44. Yue, Y.,Zhang, J.,Sun, F.,Wu, S.,Pan, Y.,Zhou, J.,Qian, G.(2019).Heavy metal leaching and distribution in glass products from the co-melting treatment of electroplating sludge and MSWI fly ash.Journal of Environmental Management,232,226-235.
  45. Zeng, S.,Ma, J.,Yang, Y.,Zhang, S.,Liu, G. J.,Chen, F.(2019).Spatial assessment of farmland soil pollution and its potential human health risks in China.Science of the Total Environment,687(15),642-653.
  46. Zhang, P. Y.,Qin, C. Z.,Hong, X.,Kang, G. H.,Qin, M. Z.,Yang, D.,Pang, B.,Li, Y. Y.,He, J. J.,Dick, R. P.(2018).Risk assessment and source analysis of soil heavy metal pollution from lower reaches of Yellow River irrigation in China.Science of The Total Environment,633(15),1136-1147.
  47. 行政院農業委員會,農田灌溉排水管理辦法,民國 110年 12 月 23 日農水字第 1106035799 號令修正發布。
  48. 行政院環保署水質保護網,水質改善⎯水體污染總量管制, https://water.epa.gov.tw/Public/CHT/WaterPurif/con_control.aspx
  49. 行政院環境保護署,「光電材料及元件製造業放流水標準」,民國 105年 01 月 06 日環署水字第 1040110356 號令修正發布。
  50. 行政院環境保護署,「放流水標準」,民國 105年 01 月 06 日環署水字第 1040110356 號令修正發布。
  51. 行政院環境保護署,土壤污染管制標準,民國 100 年01 月 31 日環署土字第 1000008495 號令修正發布。
  52. 行政院環境保護署,「石油化學專業區污水下水道系統放流水標準」,民國 105年 01 月 06 日環署水字第 1040110356 號令修正發布。
  53. 行政院環境保護署,土壤中重金屬檢測方法-微波輔助王水消化法 (NIEA S301.61B),民國 107 年 11 月 8日環署檢字第 1070007006 號公告。
  54. 行政院環境保護署,「科學工業園區污水下水道系統放流水標準」,民國 105年 01 月 06 日環署水字第 1040110356 號令修正發布。
  55. 行政院環境保護署,廢棄物及底泥中金屬檢測方法-酸消化法 (NIEA M353.02C),民國 105 年 8 月 23 日環署檢字第 1050066995 號。
  56. 行政院環境保護署,土壤污染監測標準,民國 100 年01 月 31 日環署土字第 1000008485 號令修正發布。
  57. 行政院環境保護署,農地土壤定期監測作業原則,民國 108 年 12 月 10 日環署土字第 1080093098 號函發布。
  58. 行政院環境保護署,水中金屬及微量元素檢測方法—感應耦合電漿原子發射光譜法 (NIEA W311.54C),民國 108 年 5 月 21 日環署檢字第 1080002885 號公告。
  59. 行政院環境保護署,地面水體分類及水質標準,民國106 年 09 月 13 日環署水字第 1060071140 號令修正發布。
  60. 行政院環境保護署,「化工業放流水標準」,民國 105年 01 月 06 日環署水字第 1040110356 號令修正發布。
  61. 行政院環境保護署,「晶圓製造及半導體製造業放流水標準」,民國 105年 01 月 06 日環署水字第 1040110356 號令修正發布。
  62. 瑞昶科技股份有限公司(2022)。行政院環境保護署專案委託報告行政院環境保護署專案委託報告,台北:行政院環境保護署。