题名

鉍複合奈米碳管鈦電極之電沉積時間參數探討

并列篇名

Discussion on Electrodeposition Time Parameters of Bismuth and Carbon Nanotubes Composited on Titanium Electrode

DOI

10.6376/JCCE.202106_35(2).0004

作者

王宜達(Yi-Ta Wang);李宸均(Chen-Jiun Li)

关键词

鉍 ; 奈米碳管 ; 鈦 ; 電沉積 ; 電芬頓 ; Bismuth ; Carbon nanotubes ; Titanium ; Electrodeposition ; Electro-Fenton

期刊名称

防蝕工程

卷期/出版年月

35卷2期(2021 / 06 / 01)

页次

26 - 35

内容语文

繁體中文

中文摘要

隨著科技進步與人口增加,能源議題為近年來各國所關注,燃料電池具有陽極產電陰極淨化廢水功能,系統陰極結合電芬頓高級氧化程序,將具備自我保持機制;而電極特性為影響電芬頓系統效能關鍵因素。鈦具備良好耐腐蝕性及穩定性;奈米碳管具備良好電導性及高比表面積;鉍具備良好電化學活性,均具備良好電極材料之特性。本研究藉不同電沉積時間在鈦基材表面製備複合電極,並以(1)掃描式電子顯微鏡進行形貌觀察;(2)接觸角分析電極表面親水性變化;(3)線性掃描伏安法評估過氧化氫生成能力;(4)循環伏安法進行電極活性面積量測;(5)鐵弗外插法觀察電極抗腐蝕能力;(6)RhB(Rhodamine B)降解率量測。結果顯示,在電沉積時間5分鐘電極,系統具最佳效能,其電芬頓系統30分鐘脫色率可達68.5 %;結果可提供電芬頓系統陰極未來研究及應用參考。

英文摘要

With the advancement of technology and the enhancement in population, energy issues have attracted the attention of countries in recent years, the fuel cell has the functions of anode electricity generation and cathode wastewater purification, the cathode system combined with the advanced oxidation processes of Electro-Fenton, which can construct self-holding mechanism; the characteristics of electrode are the key factors affecting performance of the Electro-Fenton system. Titanium has good corrosion resistance and stability; carbon nanotubes have good electrical conductivity and high specific surface area; bismuth possesses good electrochemical activity, all of these are suitable to apply to electrode. In this study, composite electrodes were prepared on the surface of titanium by different electrodeposition times, and the experimental results were carried out by: (1) SEM surface observation; (2) contact angle measurement to analyze the hydrophilicity for surface; (3) linear sweep voltammetry to evaluate the ability to generate H_2O_2 for cathode; (4) cyclic voltammetry to calculate the active area for each electrode; (5) Tafel extrapolation to measure the corrosion resistance for electrode; (6) decolorization test for Rhodamine B in Electro-Fenton system. The results show that the composite electrode prepared at 5 min by electrodeposition exhibited the best performance, which the decolorization rate of the Electro-Fenton system can reach 68.5 % in 30 min. It is expected that results will provide reference for the cathode application of the Electro-Fenton system in future.

主题分类 工程學 > 工程學總論
工程學 > 土木與建築工程
参考文献
  1. Ai, Z.,Xiao, H.,Mei, T.,Liu, J.,Zhang, L.,Deng, K.,Qiu, J.(2008).Electro-Fenton Degradation of Rhodamine B Based on a Composite Cathode of Cu2O Nanocubes and Carbon Nanotubes.The Journal of Physical Chemistry C,112,11929-11935.
  2. Arenas, L. F.,Ponce de Leon, C.,Boardman, R. P.,Walsh, F. C.(2016).Electrodeposition of platinum on titanium felt in a rectangular channel flow cell.Journal of the Electrochemical Society,164,D1-D10.
  3. Danilov, M. O.,Melezhyk, A. V.(2006).Carbon nanotubes modified with catalyst—Promising material for fuel cells.M. O. Danilov Journal of Power Sources,163,376-381.
  4. Kwon, K.,Park, J.,Lee, C.,Kim, H.(2012).Stability of Ni and Ti in Hydrogen Evolution in the Presence of 1-Butyl-3-methylimidazolium Tetrafluoroborate.International Journal of Electrochemical Science,7,9835-9843.
  5. Le, T. X. H.,Bechelany, M.,Lacour, S.,Oturan, N.,Oturan, M. A.,Cretin, M.(2015).High removal efficiency of dye pollutants by electron-Fenton process using a graphene based cathode.Carbon,94,1003-1011.
  6. Liang, P.,Rivallin, M.,Cerneaux, S.,Lacour, S.,Petit, E.,Cretin, M.(2016).Coupling cathodic Electro-Fenton reaction to membrane filtration for AO7 dye degradation: A successful feasibility study.Journal of Membrane Science,510,182-190.
  7. Mousset, E.,Ko, Z. T.,Syafiq, M.,Wang, Z.,Lefebvre, O.(2016).Electrocatalytic activity enhancement of a graphene ink-coated carbon cloth cathode for oxidative treatment.Electrochimica Acta,222,1628-1641.
  8. Özcan, A.,Şahin, Y.,Koparal, A. S.,Oturan, M. A.(2009).A comparative study on the efficiency of electro-Fenton process in the removal of propham from water.Applied Catalysis B: Environmental,89,620-626.
  9. Park, J. E.,Park, I. S.,Bae, T. S.,Lee, M. H.(2014).Electrophoretic Deposition of Carbon Nanotubes over TiO2 Nanotubes: Evaluation of Surface Properties and Biocompatibility.Bioinorganic Chemistry and Applications,2014,236521.
  10. Su, C.,Lu, Z.,Zhao, H.,Yang, H.,Chen, R.(2015).Photoinduced switchable wettability of bismuth coating with hierarchical dendritic structure between superhydrophobicity and superhydrophilicity.Applied Surface Science,353,735-743.
  11. Su, J.,Zhong, S.,Lia, X.,Zoub, H.(2014).Determination of Trace Antimony by Square Wave Adsorptive Cathodic Stripping Voltammetry at an Ex Situ Prepared Bismuth Film Electrode.Journal of the Electrochemical Society,161,H512-H516.
  12. Tian, Y.,Hu, L.,Han, S.,Yuan, Y.,Wang, J.,Xu, G.(2012).Electrodes with extremely high hydrogen overvoltages as substrate electrodes for stripping analysis based on bismuth-coated electrodes.Analytica Chimica Acta,738,41-44.
  13. Wang, Y. T.,Wang, Y. K.(2017).Investigation of the lamination of electrospun graphene-poly(vinyl alcohol) composite onto an electrode of bio-electro-fenton microbial fuel cell.Nanomaterials and Nanotechnology,7,1-12.
  14. 陳昱豪(2011)。大同大學光電工程研究所。