题名

Development of a Spatial Conversion Model from Census Data

并列篇名

工商及戶口普查資料空間分派模式之建立及運用

DOI

10.6377/JA.200703.0127

作者

李萬凱(Wan-Kai Lee);林建元(Chien-Yuan Lin);孫志鴻(Chi-Hong Sun);榮峻德(Chin-Te Jung)

关键词

地理資訊系統 ; 空間資料轉換 ; 空間分析 ; 可改變地區單元問題 ; Geographic information system ; spatial data conversion ; spatial analysis ; MAUP

期刊名称

建築學報

卷期/出版年月

59期(2007 / 03 / 01)

页次

127 - 144

内容语文

英文

中文摘要

地理資訊系統之應用日益普及,然而受限於不同空間尺度的轉換困難,其與普查資料的結合應用仍受到相當限制,亟需建立一個以地址對位系統為基礎的普查資料空間分派模式,以便突破地理資訊研究領域所謂的可改變地區單元問題(MAUP)。本文之目的即在建立一個空間資料轉換系統,可配合不同研究地區與目的的需求,將工商及戶口普查資料在不同空間尺度之間進行轉換,同時維持高度的準確性,期能藉此擴大普查地理的運用。本模型首先將普查資料從多邊形系統轉換成以門牌號碼為基礎的點系統,以點為基礎的資料得配合應用需要集合成不同空間單位的統計資料。此外,本文並以台北市捷運系統為案例,以說明空間分派模式的可能運用方式。

英文摘要

The application of geographic information system has rapidly developed. However, due to the difficulty of data conversion among different spatial scales and areal units, application of census geography has been seriously limited, and therefore, a geographic data conversion model to solve the so-called Modifiable Areal Unit Problem (MAUP) is critically needed. The purpose of this paper is to develop a spatial data conversion model for the application of census geography. By means of address matching, census data in polygon system are converted into point-based (address-based) system. And then, census data can be grouped into different spatial units to meet requirements of different applications while a certain level of accuracy is achieved. In addition, a case study of Taipei MRT system is conducted to demonstrate possible applications of the developed model.

主题分类 工程學 > 土木與建築工程
参考文献
  1. Agrawal, R.,Gehrke J.,Gunopulos D.,Raghavan P.(1998).Automatic subspace clustering of high dimensional data for data mining applications.
  2. Chang, Y.H.(2001).An XML-based Taiwan Social Map.
  3. Chen, T. J.(2001).Study on the Location Distribution of Taipei`s Information Software and Internet Services industries.Thesis (for Master Degree) in the NTU Graduate Institute of Building and Planning
  4. Deichmann, U,Balk D,Yetman G.(2001).Transforming population data for interdisciplinary usages: from census to grid.
  5. Department of Commerce, MOEA.(2000).Practical Manual for Convenience Store Managerial Skills.
  6. Flowerdew, R,Green M.,Fortheringgham A S.,Rogerson PA(1994).Areal interpolation and types of data.Spatial Analysis and GIS.
  7. Flowerdew, R,Openshaw S.(1987).A review of the problems of transferring data from one set of areal units to another incompatible set.
  8. Gallego, J.(2001).Using land cover information to map population density.
  9. Glymour, C.,David Madigan,Daryl Pregibon,Padhraic Smyth(1996).‘Statistical Inference and Data Mining.Communications of the ACM.
  10. Goodchild, M F.(1980).Areal interpolation: a variant of the traditional spatial problem.Geo-Processing.
  11. Goodchild, M F,Lanselin Dechmannm U.(1993).A Framework for the areal interpolation of socioeconomic data.Environment and Planning A.
  12. Hsu, L. H.(2004).Spatial Distribution and Migration Research of the Retail Service Industry in Taichung Metropolitan Area.Journal of the Graduate Institute of Building and Planning.
  13. John R. Ottensmann(2003).LUCI: Land Use in Central Indiana Model and the Relationships of Public Infrastructure to Urban Development.Public Works Management & Policy.
  14. Lee, W. K.,Pai, R. T.(2003).Study on the Spatial Grid Transformation Model in the GIS Database.United the four institutes unite dissertation symposium
  15. Lin, H.L.(2003).Modifiable Areal Units Problem in Geographic Spatial Data Mining.
  16. Lo, K. H.(2002).Basic Census Geography.Experiences in Building Municipalities.
  17. Matheus, C.,Piatetsky-Shapiro, G.,McNeill, D.,U. Fayyad,G Piatetsky-Shapiro,P. Smyth,R. Uthunisamy(1996).Selecting and Reporting What Is Interesting: The KEfiR Application to Healthcare Data. In Advances in Knowledge Discovery and Data Mining.
  18. Miller, H. J.,J. P. Wilson,A. S. Fotheringham(2003).Geographic Data Mining and Knowledge Discovery.Handbook of Geographic Information Science.
  19. Ng, R.,Han J.(1994).Efficient and effective clustering method for spatial data mining.
  20. Openshaw, S(1977).A geographical solution to scale and aggregation problem in region-building, partitioning and spatial modelling.Transactions of the Institue of British Geographers
  21. Openshaw, S.(1983).The modifiable areal unit problem.
  22. Statistical Applocations in the Spatial Sciences
  23. Piatetsky-Shapiro, G.(1991).Knowledge Discovery in Real Databases: A Report on the IJCAI-89 Workshop.AI Magazine.
  24. Roddick, J. F.,Lees, B.,H. J. Miller,J. Han(2001).Paradigms for spatial and spatio-temporal data minig.Geographic Data Mining and Knowledge Discovery.
  25. Shekhar, S.,Zhang, P.,Huang, Y.,Vatsavai, R.(2003).Trends in spatial data mining in H. Kargupta, A. Joshi, K. Sivakumar, and Y. Yesha.Data Mining: Next Generation: Challenges and Future Directions.
  26. Sun C. H.,Lin F. T.,Lin C. Y.,Lee P. F.,Lee W. K.,Hsueh M. K.(2002).Application Feasibility Study of Urban Simulation in Evaluation of Land-Use Transition-An Experiment of UrbanSim in Taipei Area.
  27. Tsai, et. al.(2004).Integration and Application of 2000 Household Census and Doorplate Address Matching in Taiwan, Long-term Care Facilities Spatial Distribution Analysis.Journal of Population.
  28. Waddell P.(2001).UrbanSim: Modeling Urban Development for Land Use, Transportation and Environmental Planning.
  29. Wang W.,Yang, R. Muntz(1997).STING: A Statistical Information grid Approach to Spatial Data Mining.