题名

Study on Simplified Algorithm for Simulation of Moisture Buffering Design-The Case Study in Single Zone Housing Unit in Taiwan

并列篇名

數值模擬簡算法應用於調濕設計研究-以台灣地區住宅寢室空間為例

作者

葉育君(Yu-Chun Yeh);江哲銘(Chi-Ming Chiang);蔡耀賢(Yaw-Shyan Tsay);羅友伶(You-Ling Lo)

关键词

室內空氣品質 ; 濕氣物性 ; 調濕建材 ; 花旗松 ; 有效滲透深度法 ; Indoor Air Quality ; Hygroscopic Properties ; Moisture Buffering Material ; EnergyPlus ; Doulas Fir ; Effective Moisture Penetration Depth

期刊名称

建築學報

卷期/出版年月

87期(2014 / 03 / 01)

页次

121 - 136

内容语文

英文

中文摘要

台灣位於亞熱帶氣候區,屬於高濕高熱的氣候型態,容易導致生物性污染,故有效率的室內濕度調節與控制對於室內空氣品質及人類健康相當重要。本研究以花旗松為研究對象,以實驗求得材料熱濕物性,作為數值模擬參數,再利用EnergyPlus軟體中,有效滲透深度(EMPD,Effective Moisture Penetration Depth)簡算法進行空間熱濕環境模擬,比較調濕建材使用面積以及室內通風換氣量與調濕性能之關係,以評估花旗松對於台灣典型住宅寢室空間的調濕性能。根據結果,室內建材花旗松具有良好調濕效果,可緩和室內濕氣變動量,減少相對濕度80%-100%發生率,降低室內生物性污染產生;且結果顯示調濕建材搭配通風換氣,可得到較佳室內調濕效果,達到較好的空氣品質。

英文摘要

Taiwan is located in the subtropics and has a climate with high temperature and humidity, which leads to high indoor moisture that causes biological pollutants. A moisture buffering effect is proposed to improve indoor air quality and human health. The hygroscopic character of Douglas fir is investigated as a parameter for numerical simulation. Additionally, the EMPD (Effective Moisture Penetration Depth) method is carried out using the program EnergyPlus to simulate moisture buffering performance with varying ventilation rates and quantities of Douglas fir. The results showed that Douglas fir can moderate the indoor moisture variation to decrease the appearance frequency of high humidity and to improve indoor air quality.

主题分类 工程學 > 土木與建築工程
参考文献
  1. Tsay, Y. S.,Chiang, C. M.(2009).Study on the applicability of moisture buffering materials in Taiwan.Journal of Architecture,69,35-50.
    連結:
  2. (2009).Code of Practice for Indoor Air Quality for Air-Conditioned Building.Singapore:SPRING Singapore.
  3. Construction and Planning Agency, Ministry of the Interior (2011). Wood Construction Design and Construction Standards. Retrieved Oct. 15, 2011 from http://www.cpami.gov.tw.
  4. ISO 12571 (2000). Hygrothermal Performance of Building Materials and Products. Determination of Hygroscopic Sorption Properties. Geneva, Switzerland: International Organization for Standardization.
  5. JIS A1475 (2004). Measuring Method of Water Vapor Sorption Isotherm of Materials. Tokyo: Japanese Standards Association.
  6. (2010).Standard Test Method for Hygroscopic Sorption Isotherm of Building Materials.PA, USA:American Society of Testing Material.
  7. JIS A1324 (1995). Measuring Method of Water Vapor Permeance of Building Materials. Tokyo: Japanese Standards Association.
  8. Central Weather Bureau of Taiwan (2010). Statistics of Monthly Mean Relative Humidity (1981-2010). Retrieved Oct. 15, 2011 from http://www.cwb.gov.tw.
  9. ISO 12572 (2001). Hygrothermal Performance of Building Materials and Products. Determination of Water Vapor Transmission Properties. Geneva, Switzerland: International Organization for Standardization.
  10. (2010).Standard Test Method for Water Vapor Transmission of Materials.PA, USA:American Society of Testing Material.
  11. (1990).Condensation and Energy: Guidelines and Practice.Leuven, Belgium:Laboratory for Building Physics.
  12. Adan, O.(1994).Eindhoven, The Netherlands,Department of Architecture, Building and Planning Technische Universiteit Eindhoven.
  13. Andrade, C.,Sarria, J.,Alonso, C.(1999).Relative humidity in the interior of concrete exposed to natural and artificial weathering.Cement and Concrete Research,29(8),1249-1259.
  14. Bornehag, C. G.,Sundell, J.,Bonini, S.,Custovic, A.,Malmberg, P.,Skerfving, S.,Sigsgaard, T.,Verhoeff, A.(2004).Dampness in buildings as a risk factor for health effects, EUROEXPO: A multidisciplinary review of the literature (1998-2000) on dampness and mite exposure in buildings and health effects.Indoor Air,14(4),243-257.
  15. Harper, G. J.(1961).Airborne Micro-organism: Survival test with four viruses.The Journal of Hygiene,59(4),479-486.
  16. Health Canada(1987).Report of the Federal-Provincial Advisory Committee on Environmental and Occupational HealthReport of the Federal-Provincial Advisory Committee on Environmental and Occupational Health,Ottawa, CA:Health Canada.
  17. Janssens, A.,De Paepe, M.(2005).Effect of moisture inertia models on the predicted indoor humidity in a room.Proceedings of the 26th AIVC-Conference: Ventilation in Relation to the Energy Performance of Buildings,Brussels, BE:
  18. Kerestecioglu, A.,Swami, M.,Dabir, R.,Razzaq, N.,Fairey, P.(1988).,FL, USA:Florida Solar Energy Center.
  19. Künzel, H. M.,Holm, A.,Zirkelbach, D.,Karagiozis, A. N.(2005).Simulation of indoor temperature and humidity conditions including hygrotherrmal interactions with building envelope.Solar Energy,78(4),554-561.
  20. Lyu, F. Y.,Tsai, K. H.,Lin, C. D.,Chung, T. H.(1990).The Illustration of Commercial Timber in Taiwan.Taipei:The Council of Agriculture, Executive Yuan.
  21. Meyer, B.(1983).Indoor Air Quality.MA, USA.:Addison-Wesley.
  22. Rode, C.,Reuhkuri, R.,Mortensen, L. H.,Hansen, K. K.,Time, B.,Gustavsan, A.,Ojanen, T.,Ahonen, J.,Svennberg, K.,Harderup, L. E.,Arfvidsson, J.(2005).Report of the Nordisk Innovations CenterReport of the Nordisk Innovations Center,Lyngby, DK:Department of Civil Engineering, Technical University of Denmark.
  23. Tu, S. H.(2007).Taipei,School of Forestry and Resource Conservation, National Taiwan University.
被引用次数
  1. 樊冠偉,陳上仁,邵文政(2020)。室內牆體建材調濕性能之研究。建築學報,111_S(技術專刊),37-61。