题名

添加飛灰與水淬爐石粉如爐石水泥混凝土抗硫防蝕性能測驗

并列篇名

Experiments: Sulfate Resistance and Anti-Corrosion for Concrete with Fly Ash, Granulated Blast-Furnace Slag and Slag Cement

DOI

10.3966/101632122015030091002

作者

湛淵源(Yuan-Yuan Chen);吳啟週(Chi-Chou Wu);鄭凱維(Kai-Wei Cheng)

关键词

水淬爐石粉 ; 飛灰 ; 爐石水泥 ; 抗硫 ; 防蝕 ; Slag ; Fly Ash ; Slag Cement ; Resistance to Sulfate Attack ; Anti-Corrosion

期刊名称

建築學報

卷期/出版年月

91期(2015 / 03 / 01)

页次

21 - 37

内容语文

繁體中文

中文摘要

本研究採用緻密配比模式,混凝土配比內添加不同細度水淬爐石粉(4302, 5651cm2/g)與F級飛灰ES(I)和爐石粉水泥(1:1)ES(M)與ES(H),w/cm=0.40且拌合水量150kg/m^3,拌製混凝土(坍度>230mm、坍流度>500mm不泌水、不析離),同時以TypeII水泥與ACI配比法設計當作控制組CC(II),澆置10×20cm試體,並在28天齡期時,以CNS1167浸泡5000ppm及飽和硫酸鈉溶液的抗硫試驗;在91天齡期時,以ASTMC1202-97氯離子電滲試驗,測試硬固混凝土防蝕性能。試驗結果顯示,28天齡期,各配比抗壓強度大於35MPa,浸泡在5000ppm硫酸鈉溶,經過25次循環試驗,表面都無目視剝落或粉化損傷,重量損失在1%以內;浸泡在飽和硫酸鈉溶液時,各配比在不同試驗循環次數產生表面剝落,抗硫性能依序為ES(I) > ES(H) > ES(M) > CC(II),重量損失達3%;氯離子電滲試驗顯示,緻密配比通過的電滲量都在1000庫倫以下,屬於"VeryLow"以下的等級,防蝕性能甚優,而使用ACI配比設計並採用TypeII水泥的CC(II)配比,氯離子電滲量8210庫倫,屬於"High"等級以上,抗腐蝕性能不佳;採用飛灰與磨細爐石粉、較低拌合水量有助提升混凝土抗硫防蝕性能。

英文摘要

This paper investigates two sets of concretes under attack from erosion solution of sulfate and chloride salt. One set is concrete produced by DMDA incorporating fly ash, different fineness of granulated blast-furnace slag(4561 and 5651 cm^2/g), and slag cement(1:1). The other set is concrete by ACI 211.1 with Type II Portland cement. The development of strength and durability of concrete at workability and hardened states were also measured. W/cm(w/c)=0.40 and mixing water 150kg/m^3, workability (slump> 230mm, slump flow> 500mm; no bleeding and segregation. The cement poured 10×20cm specimens at 28 days, immersed in 5000 ppm and saturated sodium sulfate solution 24h, then oven-dried 24h at 105O C. At 25 cycles. At 91 days, the ASTM C1202 chloride ion penetrability was test. Results showed that the ratio of compressive strength was greater than 35 MPa at 28 days, immersed in 5000ppm sodium sulfate solution and after 25 cycles of test surfaces was peeling or chalking there was -no visual damage, and weight loss was less than 1%. When immersed in a saturated sodium sulfate solution, the ratio of the different test cycles was flaking, sulfur resistance was ES (I)> ES (H)> ES (M)> CC (II), and weight loss was 3%. The chloride ion penetrability test showed that the charge passed less than 1000 coulombs. This "Very Low" level, illustrates it is an excellent anti-corrosion measure. Regarding Type II cement CC(II ), the chloride ion permeability was 8210 coulombs to illustrate its poor corrosion resistance was "High". The use of fly ash and finer ground slag particles coupled with lowering the mixing water enhanced resistance to sulfate attack and corrosion.

主题分类 工程學 > 土木與建築工程
参考文献
  1. 湛淵源、楊偉奇、黃兆龍(2001)。建築結構混凝土抗鹽害設計與驗證。建築學報,36,38-52。
    連結:
  2. ACI Committee 211(2010).Standard Practice for Selecting Proportions for Normal, Heavyweight, and Mass Concrete, ACI 211.1-10.MI, USA:American Concrete Institute.
  3. ACI Committee 318-08(2008).Building Code Requirement for Structural Concrete.MI, USA:American Concrete Institute.
  4. Atahan, H. N.,Dikme, D.(2011).Use of mineral admixtures for enhanced resistance against sulfate attack.Construction and Building Materials,25(8),3450-3457.
  5. Brown, P. W.,Hooton, R. D.(2002).Ettringite and thaumasite formation in laboratory concretes prepared using sulfate-resisting cements.Cement and Concrete Composites,24(3-4),361-370.
  6. Hansen, W. C.(1961).For various other calculation of volume change.Proceedings of American Society for Testing and Materials,PA, USA:
  7. Malhotra, V. M.(1999).Making concrete greener with fly ash.Concrete International,21(5),61-66.
  8. Mehta, P. K.(1983).Mechanism of sulfate attack on Portland cement concrete- Another look.Cement Concrete Research,13(3),401-406.
  9. Mehta, P. K.,Monteiro, P. J. M.(2008).Concrete: Structure, Properties and Materials.NJ, USA:Prentice-Hall.
  10. Mindess, S.,Young, J. F.(1981).Concrete.NJ, USA:Prentice Hall.
  11. Skaropoulou, A.,Sotiriadis, K.,Kakali, G.,Tsivilis, S.(2013).Use of mineral admixtures to improve the resistance of limestone cement concrete against thaumasite form of sulfate attack.Cement and Concrete Composites,37(1),267-275.
  12. Young, J. F.(1981).Hydration of Portland cement.Journal of Education Modules for Materials Science and Engineering,3,403-428.
  13. Zhang, M.,Chen, J.,Lv, Y. F.,Wang, D. G.,Ye, J.(2013).Study on the expansion of concrete under attack of sulfate and sulfate-chloride ions.Construction and Building Materials,39,26-32.
  14. 中國土木水利學會混凝土工程委員會(2005)。混凝土工程施工規範與解說。402-88(94)。台北市=Taipei:科技圖書公司=Scientific and Technical Publishing Co. Ltd。
  15. 吳思賢(2007)。基隆市=Keelung,國立台灣海洋大學河海工程學系=Department of Harbor and River Engineering, National Taiwan Ocean University。
  16. 沈得縣(1991)。台北市=Taipei,國立台灣科技大學營建工程研究所=Department of Civil and Construction Engineering, National Taiwan University of Science and Technology。
  17. 財團法人中興工程顧問社(2007)。卜作嵐使用手冊。台北市=Taipei:中國土木水利學會混凝土工程委員會=Concrete Committee, Chinese Institute of Civil and Hydraulic Engineering。
  18. 張建智(2005)。台北市=Taipei,國立台灣科技大學營建工程研究所=Department of Construction Engineering, National Taiwan University of Science and Technology。
  19. 陳清泉、陳振川、袁宏續、詹穎雯(1987)。財團法人台灣營建研究中心專題研究計畫報告財團法人台灣營建研究中心專題研究計畫報告,新北市=New Taipei City:財團法人台灣營建研究中心=Taiwan Construction Research Center。
  20. 湛淵源、鄭凱維、陳文進、黃兆龍(2009)。添加水淬爐石粉及F 級飛灰混凝土抗硫防蝕試驗。第二十一屆第一次建築研究成果發表會論文集,台北市=Taipei:
  21. 黃兆龍(2003)。高性能混凝土理論與實務。台北市=Taipei:詹氏書局=Chan's Arch-Publishing Co., Ltd.。
  22. 黃兆龍、湛淵源、鄭凱維(2001)。國立台灣科技大學營建系專案計畫報告國立台灣科技大學營建系專案計畫報告,台北市=Taipei:國立台灣科技大學營建系=Department of Civil and Construction Engineering, National Taiwan University of Science and Technology。
  23. 楊偉奇(1999)。台北市=Taipei,國立台灣科技大學營建工程研究所=Department of Civil and Construction Engineering, National Taiwan University of Science and Technology。
  24. 蔡志達(2005)。台北市=Taipei,國立台灣科技大學營建工程研究所=Department of Civil and Construction Engineering, National Taiwan University of Science and Technology。
  25. 鄭凱維(2002)。台北市=Taipei,國立台灣科技大學營建工程研究所=Department of Civil and Construction Engineering, National Taiwan University of Science and Technology。