题名

規劃設計階段考量中小學體育館之耐震因子及耐震能力-以多變量及人工智慧理論為研究方法

并列篇名

To Interpret the Seismic Factors and Seismic Performances of School Gymnasiums using Multivariate Statistical Analysis and Artificial Intelligent Theories at Preliminary Planning Stage

DOI

10.3966/101632122020030111004

作者

陳清山(Ching-Shan Chen)

关键词

中小學體育館 ; 耐震因子 ; 耐震能力 ; 多變量分析方法 ; 人工智慧 ; School Gymnasium ; Seismic Factor ; Seismic Performance ; Multivariate Statistical Analysis ; Artificial Intelligence

期刊名称

建築學報

卷期/出版年月

111期(2020 / 03 / 31)

页次

55 - 75

内容语文

繁體中文

中文摘要

現今體育館的規劃設計,大部分均為大跨度結構之單棟建築物,平時做為學生上體育課及居民活動之用,地震災害發生後亦提供給社區做為避難之場所,因此地位極為重要,本研究即以此重要建築物為探討主題。研究方法則根據課題需要,運用了各種多變量分析方法及人工智慧理論,包括:主成份分析、集群分析、相關係數、支持向量機以及基因表達規劃法。主成份分析乃利用特徵值的觀念歸納出體育館之耐震因子;集群分析則可將不同規模的體育館予以分群;透過相關係數原理可求出各分群耐震因子與耐震能力之關聯程度;支持向量機則應用於推論體育館耐震能力,最後再以基因表達規劃法計算出代表體育館耐震能力之最佳方程式。實證案例則以台灣地區479棟體育館為研究樣本,透過上述研究方法,探討體育館重要之耐震課題。從研究結果中可知,體育館各分群之耐震因子與崩塌地表加速度之關聯係數排序並不相同;各分群經支持向量機推論後的誤差均方根值介於0.0669至0.0856之間;判定係數R^2則介於0.7944至0.9183之間,顯示推論結果良好;經基因表達規劃法計算後之耐震方程式,可提供給建築師未來規劃設計體育館時使用,所發展之研究方法亦可供學術界後續研究之參考。

英文摘要

At present, most school gymnasiums are planned as a single-building with large-span structure. They are usually used by students for physical education classes and residents' activities. Gymnasiums are also used by the residents as a refuge after the great earthquakes, such are of great importance. This research uses multivariate statistical analysis (Principal Component Analysis, Cluster Analysis, Coefficient of Correlation) and artificial intelligent theories (Support Vector Machine (SVM), Gene Expression Programming (GEP)) to explore the new seismic topics of school gymnasiums. The concept of principal component analysis was used to generalize the seismic factors by Eigen-values. Cluster analysis was adopted for gymnasiums' clustering. Coefficient of correlation was utilized for the relationship between seismic factor and collapse ground acceleration. SVM was used to deduce the seismic performances of school gymnasiums. Finally, GEP was adopted for calculating the optimal seismic equation. The 479 school gymnasiums in Taiwan were used for research specimen. From the results know that the sequence of the relationship grades differs in every clustering. The RMSE values range from 0.0669 to 0.0856, the R^2 values are between 0.7944 and 0.9183, show good results. The seismic equation was calculated by GEP, can provide for architects to design the gymnasiums at preliminary planning stage. The research methods also can provide academics for references.

主题分类 工程學 > 土木與建築工程
参考文献
  1. 陳清山, C. S.(2017)。以人工智慧理論探討臺中市中小學校舍耐震因子及耐震能力。建築學報,100,95-116。
    連結:
  2. 鄭明淵, M. Y.,張于漢, Y. H.,Prayogo, D.,吳建燁, J. Y.(2018)。演化式人工智慧建立專案實獲完工工期推論模式之研究。建築學報,104,73-87。
    連結:
  3. Armaghani, D. J.,Safari, V.,Fahimifar, A.,Monjezi, M.,Mohammadi, M. A.(2018).Uniaxial compressive strength prediction through a new technique based on gene expression programming.Neural Computing and Applications,30(11),3523-3532.
  4. Chen, C. S.,Cheng, M. Y.,Wu, Y. W.(2012).Seismic assessment of school buildings in Taiwan using the evolutionary support vector machine inference system.Expert Systems with Applications,39(4),4102-4110.
  5. Cheng, M. Y.,Wei, H. H.,Wu, Y. W.,Chen, H. M.,Wu, C. W.(2018).Optimization of life-cycle cost of retrofitting school buildings under seismic risk using evolutionary support vector machine.Technological and Economic Development of Economy,24(2),812-824.
  6. Cheng, M. Y.,Wu, Y. W.(2009).Evolutionary support vector machine inference system for construction management.Automation in Construction,18,597-604.
  7. D’Aniello, M.,Güneyisi, E. M.,Landolfo, R.,Mermerdaş, K.(2014).Analytical prediction of available rotation capacity of cold-formed rectangular and square hollow section beams.Thin-Walled Structures,77,141-152.
  8. Di, H.,Shafiq, M. A.,AlRegib, G.(2017).Seismic-fault detection based on multiattribute support vector machine analysis.SEG Technical Program Expanded Abstracts 2017
  9. Drucker, H.,Burges, C.,Kaufman, L.,Smola, A.,Vapnik, V. N.(1996).Support vector regression machines.Advances in Neural Information Processing Systems,9,155-161.
  10. Ferreira, C.(2001).Gene Expression Programming: A new adaptive algorithm for solving problems.Complex Systems,13(2),87-129.
  11. Gandomi, A. H.,Tabatabaei, S. M.,Moradian, M. H.,Radfar, A.,Alavi, A. H.(2011).A new prediction model for the load capacity of castellated steel beams.Journal of Constructional Steel Research,67(7),1096-1105.
  12. Güllü, H.(2013).On the prediction of shear wave velocity at local site of strong ground motion stations: an application using artificial intelligence.Bulletin of Earthquake Engineering,11(4),969-997.
  13. Hu, J. L.,Tang, X. W.,Qiu, J. N.(2016).Assessment of seismic liquefaction potential based on Bayesian network constructed from domain knowledge and history data.Soil Dynamics and Earthquake Engineering,89,49-60.
  14. Jafari, S.,Mahini, S. S.(2017).Lightweight concrete design using gene expression programing.Construction and Building Materials,139,93-100.
  15. Johari, A.,Javadi, A. A.,Najafi, H.(2016).A genetic-based model to predict maximum lateral displacement of retaining wall in granular soil.Scientia Iranica Transaction A, Civil Engineering,23(1),54-65.
  16. Kaiser, H. F.(1958).The varimax criterion for analytic rotation in factor analysis.Psychometrika,23(3),187-200.
  17. Kayadelen, C.(2011).Soil liquefaction modeling by genetic expression programming and neuro-fuzzy.Expert Systems with Applications,38(4),4080-4087.
  18. Kim, J.,Kim, S.,Tang, L.(2012).A case study on the determination of building materials using a support vector machine.Journal of Computing in Civil Engineering,28(2),315-326.
  19. Kose, M. M.,Kayadelen, C.(2013).Effects of infill walls on RC buildings under time history loading using genetic programming and neuro-fuzzy.Structural Engineering and Mechanics,47(3),401-419.
  20. Kumarci, K.,Kamali, M. K.,Dehkordi, A. B.(2011).Dynamic analysis of concrete minaret using gene expression programming.2011 2nd International Conference on Construction and Project Management,Singapore:
  21. Maeda, H.,Nakazawa, S.(2017).Study on seismic performance evaluation of cylindrical latticed shells supported by substructures.AIP Conference Proceedings
  22. Nie, G.,Zhang, C.,Dai, J.,Liu, K.(2018).Seismic damage investigation and seismic performance study of space double-layered lattice structure.Journal of Performance of Constructed Facilities,32(2)
  23. Samui, P.(2008).Prediction of friction capacity of driven piles in clay using the support vector machine.Canadian Geotechnical Journal,45(2),288-295.
  24. Sun, M.,Fan, F.,Sun, B.,Zhi, X.(2016).Study on the effect of ground motion direction on the response of engineering structure.Earthquake Engineering and Engineering Vibration,15(4),649-656.
  25. Tang, C. M.(2014).The innovation and development of school buildings in Taiwan.Journal of Education Research,245,76-94.
  26. Tarawneh, B.(2018).Gene expression programming model to predict driven pipe piles set-up.International Journal of Geotechnical Engineering,1-7.
  27. Tesfamariam, S.,Liu, Z.(2010).Earthquake induced damage classification for reinforced concrete buildings.Journal of Structural Safety,32,154-164.
  28. Vapnik, V. N.(1995).The Nature of Statistical Learning Theory.NY, USA:Springer.
  29. 陳冠雄, K. H.,許宗傑, C. C.,吳俊霖, C. L.,許燕煒, Y. W.,葉皆岐, C. C.(2013)。國家地震工程研究中心研究報告國家地震工程研究中心研究報告,台北市=Taipei:國家地震工程研究中心=National Center for Research on Earthquake Engineering。
被引用次数
  1. 陳清山(2021)。中小學校舍耐震評估模式之優化-以敏感度分析及人工智慧理論為研究方法。建築學報,115,1-20。
  2. 陳清山(2022)。街屋耐震評估模型之研究-以人工智慧及敏感度分析理論為研究方法。建築學報,120,17-38。
  3. (2024)。以Q方法探討科普影片的美感知覺類型之研究。先進工程學刊,19(3),93-103。