题名

規劃設計階段考量多目標最佳化及規劃偏好之校舍規劃標竿學習

并列篇名

Benchmarking of the School Building Planning Considering the Multi-Objective Optimization Problems and Planning Preferences at the Preliminary Planning Stage

DOI

10.3966/101632122020060112001

作者

陳清山(Ching-Shan Chen);馮世人(Shih-Jen Feng)

关键词

中小學校舍 ; 無異曲線 ; 效用函數 ; 效率前緣 ; 資料包絡分析法 ; 標竿學習 ; School Building ; Indifference Curve ; Utility Function ; Efficient Frontier ; Data Envelopment Analysis ; Benchmarking

期刊名称

建築學報

卷期/出版年月

112期(2020 / 06 / 30)

页次

1 - 20

内容语文

繁體中文

中文摘要

一般而言,建築師於規劃設計階段規劃建築物時,經常將耐震性及經濟性列為兩項重要規劃目標,但此兩項目標本質上是互相衝突的。以耐震性為考量重點的建築物,常會增加建築物成本,造成建築物不夠經濟;相反地,以經濟性為衡量重點的建築物,則易使建築物的耐震性不足,此兩項目標常造成建築師規劃設計建築物時極大的困擾,如何權衡此兩項衝突目標即為多目標最佳化問題。除此之外,每位建築師的規劃偏好不盡相同,目前單一的建築物標竿學習對象,常無法滿足建築師規劃偏好的多元需求。故如何發展一個融合多目標及規劃偏好的標竿學習方法,成為一個值得研究的課題。本研究之研究方法包含:無異曲線、效用函數、效率前緣以及資料包絡分析法。無異曲線可定義建築師之規劃偏好;效用函數用於評估建築師規劃校舍時之滿足程度;效率前緣理論則可以從校舍案例中,以資料包絡分析法計算出較有效率之校舍規劃-亦即效率前緣曲線,此曲線可做為建築師規劃設計校舍時的依據;若結合效用函數的觀念,則可求出不同規劃偏好的標竿學習對象。本研究並以臺中市市中心區326棟中小學校舍為研究案例,以闡釋所發展之方法論。研究成果除可供建築師規劃設計校舍時標竿學習的依據外,亦可供學術界後續研究之參考。

英文摘要

From the viewpoints of building planning stage, the most important criteria in building planning are safety and cost. However, these two objectives are often in conflict. Buildings designed for seismic resistance prioritize safety and often require significant additional budgetary outlays. Buildings designed for cost effectiveness, therefore, often offer inadequate seismic resistance. Thus, architects, who must also strike an optimal balance between these two conflicting objectives, may be indecisive when planning buildings. It's a Multi-Objective Optimization Problem (MOOP). Except for the MOOP, there exists the diverse preferences when architects planning the buildings. Single benchmarking building usually can't be satisfied with architects. Therefore, how to develop a benchmarking method that integrates the MOOP and the diverse preferences are deserved further investigation. This research integrates indifference curve, utility function, efficient frontier and data envelopment analysis (DEA) to develop the research method. The indifference curve may be determined to deduce the planning preference of an architect. Utility function is utilized to assess the degree of architect's planning satisfaction. This research also applies the efficient frontier via DEA to identify a group of plans with the highest seismic performance index under different unit construction cost conditions for school buildings. This group of plans may create an efficient frontier curve for school buildings, via utility function, the points serving as benchmarks for different planning preference. The 326 school buildings in central Taichung City were adopted by this research as the samples to interpret the developed research methods. Results can provide valuable information for architects to benchmark their school buildings' planning, also can give the academics' references for future researches.

主题分类 工程學 > 土木與建築工程
参考文献
  1. 邱建國, C. K.,林宜鋒, Y. F.(2014)。劣化鋼筋混凝土建築物生命週期維護管理決策支援系統。建築學報,88,1-18。
    連結:
  2. 陳清山, C. S.(2015)。規劃設計階段考量耐震性及經濟性之中小學校舍規劃效率評估。建築學報,91,1-20。
    連結:
  3. Bozorgvar, M.,Zahrai, S. M.(2019).Semi-active seismic control of a 9-story benchmark building using adaptive neural-fuzzy inference system and fuzzy cooperative coevolution.Smart Structures and Systems,23(1),1-14.
  4. Carlos, A. C. C.(1996).New Orleans, L.A.,Department of Computer Science, Tulane University.
  5. Charnes, A.,Cooper, W. W.,Rhodes, E.(1978).Measuring the efficiency of decision making units.European Journal of Operational Research,12(6),429-444.
  6. Chen, X.,Huang, J.,Zhang, W.,Yang, H.(2019).Exploring the optimization potential of thermal and power performance for a low-energy high-rise building.Energy Procedia,158,2469-2474.
  7. Cheng, M. Y.,Chen, C. S.(2011).Optimal planning model for school buildings considering the tradeoff of seismic resistance and cost effectiveness: a Taiwan case study.Structural and Multidisciplinary Optimization,43,863-879.
  8. Cheng, M. Y.,Chen, C. S.(2014).Preliminary planning efficiency evaluation for school buildings considering the tradeoffs of MOOP and planning preferences.Journal of Civil Engineering and Management,20(2),211-222.
  9. Evans, G. W.(1984).An overview of techniques for solving mathematical programs.Management Science,30(11),1268-1282.
  10. Ghaffarzadeh, H.,Ghaffari, A. H.,Yang, T. Y.(2019).Fuzzy‐sliding mode control of nonlinear smart base‐isolated building under earthquake excitation.The Structural Design of Tall and Special Buildings,28(1),e1557.
  11. Harding, J.,Brandt-Olsen, C.(2018).Biomorpher: Interactive evolution for parametric design.International Journal of Architectural Computing,16(2),144-163.
  12. Jalilzadehazhari, E.,Johansson, P.,Johansson, J.,Mahapatra, K.(2019).Developing a decision-making framework for resolving conflicts when selecting windows and blinds.Architectural Engineering and Design Management,15(5),357-381.
  13. Johan, A.(2000).Technical Report of Department of Mechanical Engineering, Linkoping UniversityTechnical Report of Department of Mechanical Engineering, Linkoping University,Linkoping, Sweden:Linkoping University.
  14. Kalan, O.,Kurkcu, A.,Ozbay, K.(2019).Is additive utility function always a sufficient method in the project prioritization process? Bridge management perspective.Transportation Research Record,2673(10),284-294.
  15. Kristin, L. W.,Erik, K. A.(1989).Computations with imprecise parameters in engineering designs: background and theory.ASME Journal of Mechanisms, Transmissions, and Automation in Design,111,616-625.
  16. Mankiw, N. G.(2011).Principles of Economics.OH, USA:South-Western College Pub.
  17. McGeorge, J. F.(1988).Design productivity: A quality problem.Journal of Management in Engineering,4(4),350-362.
  18. Mehrkian, B.,Bahar, A.,Chaibakhsh, A.(2019).Semiactive conceptual fuzzy control of magnetorheological dampers in an irregular base‐isolated benchmark building optimized by multi‐objective genetic algorithm.Structural Control and Health Monitoring,26(3),e2302.
  19. Min, L.(2003).Urbana, Illinois, USA.,Department of Civil Engineering, University of Illinois at Urbana-Champaign.
  20. Najafi-Ghalelou, A.,Zare, K.,Nojavan, S.(2019).Multi-objective economic and emission scheduling of smart apartment building.Journal of Energy Management and Technology,3(3),41-53.
  21. Samuelson, P. A. (1938). A note on the pure theory of consumer's behaviour. Economica, 5, 61-71.
  22. Souza, J.,Silva, A.,de Brito, J.,Bauer, E.(2018).Analysis of the influencing factors of external wall ceramic claddings' service life using regression techniques.Engineering Failure Analysis,83,141-155.
  23. Suksuwan, A.,Spence, S. M.(2019).Performance-based bi-objective design optimization of wind-excited building systems.Journal of Wind Engineering and Industrial Aerodynamics,190,40-52.
  24. Waibel, C.,Wortmann, T.,Evins, R.,Carmeliet, J.(2019).Building energy optimization: An extensive benchmark of global search algorithms.Energy and Buildings,187,218-240.
  25. Yu, Y.,Wang, C.,Gu, X.,Li, J.(2019).A novel deep learning-based method for damage identification of smart building structures.Structural Health Monitoring,18(1),143-163.
  26. Zekeriya, A.,Yusuf, A.(2010).Optimum topology and shape design of pre-stressed concrete bridge girders using a genetic algorithm.Structural and Multidisciplinary Optimization,41,151-162.
  27. 黃世建, S. J.,鍾立來, L. L.,簡文郁, W. Y.,葉勇凱, Y. K.,王翊光, Y. K.,余建維, C. W.,張撼軍, H. C.,陳永蒼, Y. C.,周德光, T. K.,許丁友, T. Y.,邱建國, C. K.,邱聰智, T. C.(2005)。國家地震工程研究中心研究報告國家地震工程研究中心研究報告,台北市=Taipei:國家地震工程研究中心=National Center for Research on Earthquake Engineering。