题名

運用影像辨識法探討行人步道綠視率與熱影像溫度之相關性分析

并列篇名

The Relationship between Visible Green Index and Temperatures of Infrared Thermograph on Pedestrian Using Image Recognition Technology

DOI

10.3966/101632122020120114009

作者

張效通(Hsiao-Tung Chang);劉錫睿(Xi-Rui Liu);張慕恩(Mu-En Chang);王常暢(Chang-Chang Wang)

关键词

綠視率 ; 熱影像 ; 都市熱環境 ; 行人步道 ; 影像辨識法 ; 無人機 ; Visible Green Index ; Infrared Thermograph ; Urban Thermal Environment ; Pedestrian ; Image Recognition Technology ; Unmanned Aerial Vehicle (UAV)

期刊名称

建築學報

卷期/出版年月

114_S期:建築物理環境控制專刊(2020 / 12 / 30)

页次

39 - 57

内容语文

繁體中文

中文摘要

綠視率為綠化面積在行人正常視野面積所占的比例,已經成為衡量公共綠化的三維指標。為探討單位面積下綠視率愈高,則平均溫度是否也愈低;因此,本文透過實景影像及熱影像雙鏡頭的無人機低空飛行模擬人體正視視角下拍攝行人步道影像,進而應用Visual Basic撰寫影像識別程式,將每張照片分成16區塊,解析每區塊之綠視率及熱影像溫度等量化數值。研究成果顯示,綠視率越高熱像平均溫度值則越低、綠視率越低則熱像溫度越高。提高綠視率的效益確能緩解都市熱環境溫度,亦影響人的舒適度感受。

英文摘要

The visible green index is the proportion of green area in pedestrian's normal field of vision, which has become a three-dimensional indicator to measure public greening. To explore whether the higher the visible green index per unit area, the lower the average temperature is. Therefore, through the real image and infrared thermograph by UAV flying in low altitude with two lenses, which simulates the human body to take the pedestrian image from the perspective of the front view. And then, that uses Visual Basic to write the image recognition program, divides each picture into 16 blocks, and analyzes the visible green index and temperatures of infrared thermography values of each block. The research results show that the higher the visible green index, the lower the temperatures of infrared thermograph is, On the contrary, the lower visible green index is, the higher the temperature of infrared thermograph. It can also alleviate the urban thermal environment temperature and affect the comfort of people.

主题分类 工程學 > 土木與建築工程
参考文献
  1. (1969)。思想の科學事典。日本=Japan:勁草書房=Keiso Shobo。
  2. Aoki, Y.(1991).Evaluation methods for landscapes with greenery.Landscape Research,16(3),3-6.
  3. Aoki, Y.(2006).Trends of researches on visual greenery since 1974 in Japan.Environmental Information Science,34(4),46-49.
  4. Arup(2016).Cities Alive: Towards a Walking World.London:Arup.
  5. Bobiak, J. P.,McGeorge, G.(2015).Assessing hyperspectral image content of pharmaceutical products using the herfindahl–hirschman index and Ripley's k-functions.Applied Spectroscopy,69(8),955-965.
  6. Camacho-Cervantes, M.,Schondube, J. E.,Castillo, A.(2014).How do people perceive urban trees? Assessing likes and dislikes in relation to the trees of a cit.Urban Ecosystems,17(3),761-773.
  7. Glaser, M.,Hoff, M.,Hans, K.,Laven, J.,Teeffelen, J.(2016).The City at Eye Level: Lessons for Street Plints.Delft:Eburon Academic Publisher.
  8. Jacobs, J.(1961).The Death and Life of Great American Cities.New York:Random House.
  9. Learned-Miller, E. G.(2004).ICA Using Spacings Estimates of Entropy.Journal of Machine Learning Research,4(7/8),1271-1295.
  10. Li, X. J.,Zhang, C. R.,Li, W. D.,Ricard, R.,Meng, Q. Y.,Zhang, W. X.(2015).Assessing street-level urban greenery using Google Street View and a modified green view index.Urban Forestry & Urban Greening,14,675-685.
  11. Lin, Y. H.,Tsai, C. C.,Sullivan, W. C.(2014).Does awareness effect the restorative function and perception of street trees?.Frontiers in Psychology,15(906),1-9.
  12. Speck, J.(2012).Walkable City: How Downtown Can Save America, One Step at a Time.New York:North Point Press, A division of Farrar, Straus and Giroux.
  13. Todorova, A,Asakawa, S,Aikoh, T.(2004).Preferences for and attitudes towards street flowers and trees in Sapporo, Japan.Landscape and Urban Planning,69(4),403-416.
  14. Trancik, R.(1986).Finding Lost Space: Theoris of Urban Design.US:John Wiley.
  15. Ulrich, R. S.(1986).Human responses to vegetation and landscapes.Landscape and Urban Planning,13,29-44.
  16. Wang, W.,Lin, Z.,Zhang, L.,Yu, T.,Chen, P.,Zhu, Y.(2019).Building visual green index: A measure of visual green spaces for urban building.Urban Forestry & Urban Greening,40,335-343.
  17. Welle, B.,Qingnan, L.,Claudia, A. S.,Sarmiento, C.,Obelheiro, M.(2013).Cities Safer by Design: Guidance and Examples to Promote Traffic Safety through Urban and Street Design.Embarq, World Resources Institute.
  18. Wheeler, S. M.(2004).Planning for Sustainability.New York:Taylor & Francis Group.
  19. Wigan, M.(1994).Transport Reseach RecordTransport Reseach Record,Washington, D.C.:Transportation Research Board.
  20. Yang, J.,Zhao, L.,Mcbride, J.(2009).Can you see green? Assessing the visibility of urban forests in cities.Landscape and Urban Planning,91,97-104.
  21. Yu, S.,Yu, B.,Song, W.,Wu, B.,Zhou, J.,Huang, Y.,Wu, J.,Zhao, F.,Mao, W.(2016).View-based greenery: A three-dimensional assessment of city buildings’ green visibility using Floor Green View Index.Landscape and Urban Planning,152,13-26.
  22. 丁亜奎、福田知弘、矢吹信喜、道川隆士(2014)。緑視率自動測定システムに関する基礎的検討。情報システム技術委員會第 37 回情報。システム・利用・技術シンポジウム
  23. 大阪市(2018)。新大阪市緑の基本計画。引用於 2018年 05 月 03 日,取自http://www.city.osaka.lg.jp/kensetsu/page/0000239835.html. Osaka City (2018). Formulated a New Basic Plan for Greenery in Osaka City. May 3, 2018. From, http://www.city.osaka.lg.jp/kensetsu/page/0000239835.html.
  24. 大阪府(2013)。,未出版
  25. 石田基裕(1974)。都市問題に関する考察。道路建設,320,13-16。
  26. 伍健, J.,鄧夢薇, M. W.,繆建群, J. Q.(2019)。平均誤差向量加速的 K -Means 色彩量化方法。電腦工程與應用,55(12),188-214。
  27. 呂建平, J. P.,黃英, Y.(2002)。幾種圖像色彩量化方法的分析比較。電腦應用,22(5),86-88。
  28. 折原夏志(2006)。緑景観の評価に関する研究——良好な景観形成に向けた緑の評価手法に関する考察。調査研究期報,142,4-13。
  29. 肖希, X.,韋怡凱, Y. K.,李敏, M.(2018)。日本城市綠視率計量方法與評價應用。國際城市規劃,33(2),98-103。
  30. 周成斌, C. B.,王曉慧, X. H.(2015)。高層高密度住區三維指標拓展研究。西部人居環境學刊,30(1),118-124。
  31. 周兵, B.,沈鈞毅, J. Y.,彭勤科, Q. K.(2004)。一種基於顏色聚類特徵的色彩量化演算法。小型微型電腦系統,25(11),1998-2001。
  32. 東京新宿區(2018)。新宿區みどりの基本計畫[EB/OL]。引用於 2018 年 05 月 03 日,取自http://www.city.shinjuku.lg.jp/seikatsu/file14_04_00001.html。Shinjuku, Tokyo (2018). Shinjuku ward green basic plan. Revised "Shinjuku Ward Green Basic Plan" [EB/OL]. Japan. on May 3, 2018. From http://www.city.shinjuku.lg.jp/seikatsu/file14_04_00001.html
  33. 東京墨田區(2011)。墨田區緑の基本計畫[EB/OL]。引用於 2018 年 05 月 03 日,取自http://www.city.sumida.lg.jp/kuseijoho/sumida_kihon/ku_kakusyukeikaku/midorinokihonkeikaku.html。Sumida, Tokyo (2011). Sumida Ward Green Basic Plan (February 2011) [EB/OL]. Japan. on May 3, 2018. From, http://www.city.sumida.lg.jp/kuseijoho/sumida_kihon/ku_kakusyukeikaku/midorinokihonkeikaku.html
  34. 青木陽二(1987)。視野の広がりと緑量感の関連。造園雜誌,51(1),1-10。
  35. 張佳暉, J. H.,孟慶岩, Q. Y.,孫雲曉, Y. X.,Sun, Z. H.,Zhang, L. L.(2017)。城市行道樹綠視量指數研究。地球資訊科學,19(6),838-845。
  36. 張煒, W.,周昱杏, Y. X.,楊夢琪, M. Q.(2019)。全景綠視率自動識別和計算研究。風景園林,27(10),89-94。
  37. 章毓晉, Y. J.(2008).影像處理和分析技術.臺北市=Taipei:高等教育出版社=Higher Education Press.
  38. 彭銳, R.,劉海霞, H. X.(2001)。城市道路綠視率自動化計算方法研究。北京規劃建設,4,61-64。
  39. 豊田市(2018)。豊田市緑の基本計画[EB/OL]。引用於2018 年 05 月 03 日,取自http://www.city.toyota.aichi.jp/shisei/gyoseikeikaku/toshiseibi/1007512.html。Toyota (2018). Toyota City Green Basic Plan. [EB/OL]. Japan. on May 3, 2018. From, http://www.city.toyota.aichi.jp/shisei/gyoseikeikaku/toshiseibi/1007512.html
  40. 劉濱誼, B. Y.,薑允芳, Y. F.(2002)。中國城市綠地系統規劃評價指標體系的研究。城市規劃彙刊,2,27-29。
被引用次数
  1. Yan-Jia Liou,Fu-Yao Liu(2023)。Hierarchical Evaluation Framework for Health and Wellness Destination: A Case in Zhangzhou, China。戶外遊憩研究,36(1),33-64。
  2. 許富雄,張效通(2022)。運用影像辨識法比較行人道綠視率對熱環境之影響。建築學報,120,39-52。
  3. 張效通,束博(2021)。應用無人機傾斜攝影三維建模於遠距建成環境模擬之方法。建築學報,117,117-139。
  4. (2024)。低碳綠建築-從綠化量到綠容積率指標。土地問題研究季刊,23(2),103-110。