题名

都市建築區景觀排樹植栽對行人風場減風功效之探討

并列篇名

Numerical Investigation of Wind Reduction Effect of Row Trees in Urban Building Area

DOI

10.3966/101632122021030115003

作者

陳建忠(J. J. Chen);詹明勳(M. H. Chan);方富民(F. M. Fang);鍾政洋(C. Y. Chung);張人傑(J. C. Chang);李冠儒(G. R. Lee)

关键词

植栽 ; 行人風場 ; 數值模擬 ; 風洞試驗 ; Planting ; Pedestrian Wind ; Numerical Simulation ; Wind Tunnel Test

期刊名称

建築學報

卷期/出版年月

115期(2021 / 03 / 31)

页次

41 - 55

内容语文

繁體中文

中文摘要

都市建築區中栽種景觀樹及行道樹除了有助於景觀之調和外,對於區內風場微氣候也能有相當程度之影響,並在多風區域行人風環境之改善上扮演著正面之角色。本研究以過往相關單株植栽模擬研究之成果為基礎,將風場數值模擬延伸到排樹情況地面風場之探討。研究中首先選定具有不同樹冠枝葉密度的典型樹種,並製作縮小尺度之樹模型,於風洞試驗中量得之樹後風速剖面乃成為後續風場模擬計算中律定樹冠枝葉特性參數之基準。待排樹鄰近風場的數值模式確立後,則藉由真實風域情況中樹種、樹高與樹間距之改變進行系統化的排樹風場模擬,繼而獲得這些因子對樹後行人高度範圍中減風效應的量化結果,以為排樹植栽減風設計規劃的重要參考。

英文摘要

Planting pedestrian trees in urban building areas can not only upgrade the landscape of the territories but affect the local micro-meteorology and lead to improvements of wind environment. The study is to investigate the wind reduction effect behind row trees so as to gain additional insight into the related landscape tree design. At the beginning, three typicaltree species with different clown densities are selected and the corresponding tree models are made. The wind speed profiles downstream of trees are measured and used as the basis to calibrate the corresponding characteristic clown parameters. After the numerical model is determined, a series of numerical computations are further performed in real prototype scales by varying the tree height and tree distance. The results of the wind field at the pedestrian level are then analyzed on a systematic basis to analyze quantitatively the effect of wind reduction and to assess the associated row-tree design principles.

主题分类 工程學 > 土木與建築工程
参考文献
  1. Fang, F. M.,Li, Y. C.,Chung, C. Y.(2016).Numerical simulation of flow around broad-leaf trees.Journal of Applied Science and Engineering,19,429-438.
  2. Fang, F. M.,Liang, T. C.,Chung, C. Y.,Li, Y. C.(2015).On the simulation of flow around discrete coniferous trees.Journal of the Chinese Institute of Engineers,38,665-674.
  3. Finnigan, J.(2000).Turbulence in plant canopies.Annual Review Fluid Mechanics,32,519-571.
  4. Flesch, T. K.,Wilson, J. D.(1999).Wind and remnant tree sway in forest cutblocks. I. Measured winds in experimental cutblocks.Agricultural and Forest Meteorology,93,229-242.
  5. Kang, G.,Kim, J. J.,Kim, D. J,Choi, W.,Park, S. J.(2017).Development of a computational fluid dynamics model with tree drag parameterization: Application to pedestrian wind comfort in an urban area.Building and Environment,124,209-218.
  6. MacCormack, R.(1969).The effect of viscosity in hyper-velocity impact cratering.AIAA Paper,Washington D.C.:
  7. Massman, W.(1987).A comparative study of some mathematical models of the mean wind structure and aerodynamic drag of plant canopies.Boundary-Layer Meteorology,40,179-197.
  8. McAuliffe, B. R.,Larose, G. L.(2012).Reynolds-number and surface-modeling sensitivities for experimental simulation of flow over complex topography.Journal of Wind Engineering and Industrial Aerodynamic,104-106,603-613.
  9. Raupach, M. R.,Antonia, R. A.,Rajagopalan, S.(1991).Rough-wall turbulent boundary layers.Applied Mechanics Review,44,1-25.
  10. Raynor, G. S.(1971).Wind and temperature structure in a coniferous forest and a contiguous field.Forest Science,17,351-363.
  11. Salim, M. H.,Schlünzen, K. H.,Grawe, D.(2015).Including trees in the numerical simulations of the wind flow in urban areas: Should we care?.Journal of Wind Engineering and Industrial Aerodynamic,144,84-95.
  12. Schomaker, M. E.,Zarnoch, S. J.,Bechtold, W. A.,Latelle, D. J.,Burkman, W. G.,Cox, S. M.(2007).,United States Department of Agriculture Forest Service, Southern Research Station General.
  13. Shaw, R. H.,Schumann, U.(1992).Large-eddy simulation of turbulent flow above and within a forest.Boundary-Layer Meteorology,61,47-64.
  14. Sládek, I.,Bodnár, T.,Kozel, K.(2007).On a numerical study of atmospheric 2D and 3D-flows over a complex topography with forest including pollution dispersion.Journal of Wind Engineering and Industrial Aerodynamic,95,1424-1444.
  15. Song, C.,Yuan, M.(1988).A weakly compressible flow model and rapid convergence method.Journal of Fluids Engineering, ASME,110(4),441-455.
  16. Su, H. B.,Shaw, R. H.,Moeng, C. H.,Sullivan, P. P.(1998).Turbulent statistics of neutrally stratified flow within and above a sparse forest from large-eddy simulation and field observations.Boundary-Layer Meteorology,88,363-397.
  17. Wilson, J. D.,Flesch, T. K.(1999).Wind and remnant tree sway in forest cutblocks. III. A windflow model to diagnose spatial variation.Agricultural and Forest Meteorology,93,243-258.
  18. 方偉德, W. T.(2004)。桃園市=Taoyuan City,國立中央大學土木工程研究所=Department of Civil Engineering, National Central University。
  19. 行政院農委會 (2020) 。 常見行道樹及景觀木 。https://kmweb.coa.gov.tw/subject/subject.php?id=3307。Forestry Bureau, COA, Executive Yuan(2020). Common Street Trees and Landscape Trees. https://kmweb.coa.gov.tw/subject/subject.php?id=3307.
  20. 科博館 (2020) 。 10 種臺灣地區常見行道樹種 。http://web2.nmns.edu.tw/botany/most/most8_01.php。National Museum of Natural Science (2020). Ten Common Street Tree Species in Taiwan. http://web2.nmns.edu.tw/botany/most/most8_01.php
  21. 鄧書麟, S. L.,何坤益, K. Y.,陳財輝, T. H.,王志斌, J. B.,高銘發, M. F.(2005)。台灣西海岸防風林造林策略與樹種之選介。台灣林業,31(1),62-67。