题名

基於透空式建築型態的街谷細懸浮微粒汙染物擴散數值模擬

并列篇名

Numerical Simulation of Fine Particulate Matter Dispersion in the Street Canyon Based on Opening Building

DOI

10.53106/101632122021090117004

作者

葉沛廷(Pei-Ting Yeh);蘇瑛敏(Ying-Ming Su)

关键词

透空式建築 ; 計算流體力學 ; 交通汙染物 ; 細懸浮微粒 ; 都市街谷 ; 離散相模型 ; Opening Building ; Computational Fluid Dynamics ; Traffic pollutants ; Fine Particulate Matter (PM_(2.5)) ; Urban Street Canyon ; Discrete Phase Models (DPM)

期刊名称

建築學報

卷期/出版年月

117期(2021 / 09 / 30)

页次

69 - 95

内容语文

繁體中文

中文摘要

受發展影響都市空間結構呈現高層且高密度趨勢,頻繁的人為活動加上在密集空間裡持續排放汙染物,破壞都市微氣候環境造成負面效應(任超,2016;歐陽嶠暉,2005),為改善惡化的都市環境,主要透過規劃與設計針對建物與街道空間型態進行優化,其中高密度的建築群影響周邊風環境,不利於街谷內汙染物的擴散,而透過透空式建築設計能減少建築迎風面面積,增加風通透性以改善都市環境(香港屋宇署,2013),過往研究多透過觀測的方式分析汙染物與氣象條件的關係,近期則針對汙染物進行電腦數值模擬,但採用顆粒物的模擬相對較少,因此本研究配合Hang, J. & Li, Y. G.(2010)理想城市10×9配置,設定透空式建築量體為長(30m)、寬(30m)、高(80m),並以無透空建築為對照組,加上不同建築洞口高度(0.45h、0.65h及0.45-0.65h)為變項設計共4組研究方案,使用ANSYS Fluent v18進行風環境與PM_(2.5)細懸浮微粒汙染物模擬。研究結果顯示:高層建築量體增加街道封閉性,導致空氣流通與汙染物擴散的阻礙,透空式建築能提高街道的滲透性改善空氣流通。隨著Z軸高度增加汙染物分佈受街谷空間及汙染源距離影響,因此較低的洞口具有較佳汙染物去除效果。連續且過長的街道讓汙染物累積於都市末端,建議維持足夠的都市空間讓街區空氣流通,以得到理想改善效果。

英文摘要

This study is based on opening buildings of length (30m), width (30m), and height (80m) combined with Hang, J. & Li, Y. G. (2010) ideal city 10 × 9 configurations, and building without hole is control group, different building opening heights (0.45h, 0.65h, and 0.45-0.65h) are designed as various groups of 4 research scenario. Using ANSYS Fluent v18 to simulate the wind environment and PM2.5 fine particulate matter. The results of the study found that the volume of high-rise buildings increased the sealing of the streets, leading to the obstruction of air circulation and the spread of pollutants. The opening buildings can increase the permeability of the streets and improve the air circulation. As the height of the Z-axis increases, the distribution of pollutants is affected by the space of the street canyon and the distance of the pollution source, so the lower hole has a better effect of removing pollutants. Continuous and long streets allow pollutants to accumulate at the end of the city. It is recommended to maintain sufficient urban space to allow air circulation in the blocks to obtain the desired improvement effect.

主题分类 工程學 > 土木與建築工程
参考文献
  1. 邱英浩, Y. H.,吳孟芳, M. F.(2010)。不同街道尺度對環境風場之影響。都市與計劃,37(4),501-528。
    連結:
  2. 邱英浩, Y. H.,陳智仁, Z. R.,劉天祥, T. X.(2019)。街道尺度與建築配置對室內自然通風效益之影響。建築學報,108,59-79。
    連結:
  3. Architectural Institute of Japan(2016).AIJ Benchmarks for Validation of CFD Simulations Applied to Pedestrian Wind Environment around Buildings.Tokyo:Architectural Institute of Japan.
  4. Blocken, B.,Vervoort, R.,Hooff, T.V.(2016).Reduction of outdoor particulate matter concentrations by local removal insemi-enclosed parking garages: A preliminary case study for Eindhoven city center.Journal of Wind Engineering and Industrial Aerodynamics,159,80-98.
  5. Bruse, M.,Fleer, H.(1998).Simulating surface-plant-air interactions inside urban environments with a three dimensional numerical model.Environmental Modelling and Software,13(3-4),373-384.
  6. Buccolieri, R.,Salim, S. M.,Leo, L. S. Sabatino, S. D. Chan, A.,Lelpo, P.,Gennaro, de G.,Gromke, C.(2010).Analysis of local scale tree–atmosphere interaction on pollutant concentration in idealized street canyons and application to a real urban junction.Atmospheric Environment,45(9),1702-1713.
  7. Chavez, M.,Hajra, B.,Stathopoulos, T.,Bahloul, A.(2011).Near-field pollutant dispersion in the built environment by CFD and wind tunnel simulations.Journal of Wind Engineering and Industrial Aerodynamics,99(4),330-339.
  8. Chavez, M.,Hajra, B.,Stathopoulos, T.,Bahloul, A.(2012).Assessment of near-field pollutant dispersion: Effect of upstream buildings.Journal of Wind Engineering and Industrial Aerodynamics,104-106,509-515.
  9. Chen, L.,Hang, J.,Sandberg, M.,Claesson, L.,Sabatino, S. D.,Wigo, H.(2017).The impacts of building height variations and building packing densities on flow adjustment and city breathability in idealized urban models.Building and Environment,118,344-361.
  10. Cheng, W. C.,Fernando, P. A.(2015).Adjustment of turbulent boundary-layer flow to idealized urban surfaces: a large-eddy simulation study.Boundary-Layer Meteorol,155,249-270.
  11. Cui, P. Y.,Li, Z.,Tao, W. Q.(2016).Buoyancy flows and pollutant dispersion through different scale urban areas: CFD simulations and wind-tunnel measurements.Building and Environment,104,76-91.
  12. Dai, Y. W.,Mak, M. C.,Ai, Z. T.,Hang J.(2018).Evaluation of computational and physical parameters influencing CFD simulations of pollutant dispersion in building arrays.Building and Environment,137,90-107.
  13. Davenport, A. G.,Grimmond, C. S.,Oke, T. R.(2020).Estimating the roughness of cities and sheltered country.12th Conf. Apply Climate,Boston:
  14. Dong, Q. C.,Lin, Y. G.,Huang, J. Y.,Chen, Z. F.(2020).Has urbanization accelerated PM2.5 emissions? An empirical analysis with cross-country data.China Economic Review,59,101381.
  15. Eichhorn, J.,Kniffka, A.(2010).The numerical flow model MISKAM: State of development and evaluation of the basic version.Meteorologische Zeitschrift,19(1),81-90.
  16. Feng, S. L.,Gao, D.,Liao, F.,Zhou, F. R.,Wang, X. M.(2016).The health effects of ambient PM2.5 and potential mechanisms.Ecotoxicology and Environmental Safety,128,67-74.
  17. Gallagher, J.,Lago, C.(2019).How parked cars affect pollutant dispersion at street level in an urban street canyon? A CFD modelling exercise assessing geometrical detailing and pollutant decay rates.Science of the Total Environment,651,2410-2418.
  18. Gousseau, P.,Blocken, B.,Stathopoulos, T.,Heijst, G. J. F. van(2015).Near-field pollutant dispersion in an actual urban area: Analysis of the mass transport mechanism by high-resolution Large Eddy Simulations.Computers& Fluids,114,151-162.
  19. Gousseau, P.,Blocken, B.,Stathopoulos, T.,VanHeijst, G. J. F.(2011).CFD simulation of near-field pollutant dispersion on a high-resolution grid: A case study by LES and RANS for a building group in downtown Montreal.Atmospheric Environment,45(2),428-438.
  20. Grau-Bové, J.,Mazzei, L.,Malki-Ephstein, L.,Thickett, D.,Strlicˇ, M.(2016).Simulation of particulate matter ingress, dispersion and deposition in a historical building.Journal of Cultural Heritage,18,199-208.
  21. Guo, D. P.,Zhao, P.,Wang, R.,Yao, R. T.,Hu, J. M.(2020).Numerical simulations of the flow field and pollutant dispersion in an idealized urban area under different atmospheric stability conditions.Process Safety and Environmental Protection,136,310-323.
  22. Hang, J.,Li, Y. G.(2010).Ventilation strategy and air change rates in idealized high-rise compact urban areas.Building and Environment,45(12),2754-2767.
  23. Hang, J.,Li, Y. G.(2012).Macroscopic simulations of turbulent flows through high-rise building arrays using a porous turbulence model.Building and Environment,49,41-54.
  24. Hang, J.,Li, Y. G.(2011).Age of air and air exchange efficiency in high-rise urban areas and its link to pollutant dilution.Atmospheric Environment,45(31),5572-5585.
  25. Hang, J.,Li, Y. G.,Buccolieri, R.,Sandberg, M.,Sabatino, S. D.(2012).On the contribution of mean flow and turbulence to city breathability: The case of long streets with tall buildings.Science of the Total Environment,416,362-373.
  26. Hang, J.,Li, Y. G.,Sandberg, M.(2011).Experimental and numerical studies of flows through and within high-rise building arrays and their link to ventilation strategy.Wind Engineering and Industrial Aerodynamics,99(10),1036-1055.
  27. Hang, J.,Li, Y. G.,Sandberg, M.,Buccolieri, R.,Sabatino, S. D.(2012).The influence of building height variability on pollutant dispersion and pedestrian ventilation in idealized high-rise urban areas.Building and Environment,56,346-360.
  28. Hang, J.,Li, Y. G.,Sandberg, M.,Claesson, L.(2010).Wind conditions and ventilation in high-rise long street models.Building and Environment,45,1353-1365.
  29. Hang, J.,Sandberg, M.,Li, Y. G.(2009).Age of air and air exchange efficiency in idealized city models.Building and Environment,44,1714-1723.
  30. Hang, J.,Sandberg, M.,Li, Y. G.(2009).Effect of urban morphology on wind condition in idealized city models.Atmospheric Environment,43,869-878.
  31. Hang, J.,Sandberg, M,Li, Y. G.,Claesson, L.(2009).Pollutant dispersion in idealized city models with different urban morphologies.Atmospheric Environment,43,6011-6025.
  32. Hang, J.,Wang, Q.,Chen, X. Y.,Sandberg, M.,Zhu, W.,Buccolieri, R.,Sabatino, S. D.(2015).City breathability in medium density urban-like geometries evaluated through the pollutant transport rate and the net escape velocity.Building and Environment,94,166-182.
  33. Hao, C. R.,Xie, X. M.,Huang, Y.,Huang, Z.(2019).Study on influence of viaduct and noise barriers on the particulate matter dispersion in street canyons by CFD modeling.Atmospheric Pollution Research,10(6),1723-1735.
  34. Hassan, A. M.,ELMokadem, A. A.,Megahed, N. A.,M. AboEleinen, O(2020).Urban morphology as a passive strategy in promoting outdoor air quality.Journal of Building Engineering,29,101204.
  35. Hassan, A. M.,Mokadem, A. A. F. E.,Megahed, N. A.,Eleinen, O. M. A.(2020).Improving outdoor air quality based on building morphology: Numerical investigation.Frontiers of Architectural Research.
  36. Jörg, F.,Hellsten, A.,Schlünzen, H.,Carissimo, B.(2007).Best Practice Guideline for the CFD Simulation of Flows the Urban Environment.EU:COST.
  37. Karkoulias, V. A.,Marazioti, P. E.,Georgiou, D. P.,Maraziotis, E. A.(2020).Computational Fluid Dynamics modeling of the trace elements dispersion and comparison with measurements in a street canyon with balconies in the city of Patras, Greece.Atmospheric Environment,223,117210.
  38. Keshavarzian, E.,Jin, R.,Dong, K.,Kwok, K. C. S.,Zhang, Y.,Zhao, M.(2020).Effect of pollutant source location on air pollutant dispersion around a high-rise building.Applied Mathematical Modelling,81,582-602.
  39. Kikumoto, H.,Ooka, R.(2012).A study on air pollutant dispersion with bimolecular reactions in urban street canyons using large-eddy simulations.Journal of Wind Engineering and Industrial Aerodynamics,104-109,516-522.
  40. Lai, D.,Liu, W.,Gan, T.,Liu, K.,Chen, Q.(2019).A review of mitigating strategies to improve the thermal environment and thermal comfort in urban outdoor spaces.Science of the Total Environment,661,337-353.
  41. Lin, M.,Hang, J.,Li, Y. G.,Luo, Z.,Sandberg, M.(2014).Quantitative ventilation assessments of idealized urban canopy layers with various urban layouts and the same building packing density.Building and Environment,79,152-167.
  42. Liu, Y. S.,Cui, G. X.,Wang, Z. S.,Zhang, Z. S.(2011).Large eddy simulation of wind field and pollutant dispersion in downtown Macao.Atmospheric Environment,45(17),2849-2859.
  43. Ma, X. N.,Zhao, J. Y.(2018).Numerical simulation of turbulent flow regulation of adjacent buildings space based on characteristics of particulate matter diffusion.Ekoloji,106,803-815.
  44. Mei, S. J.,Luo, Z. W.,Zhao, F. Y.,Wang, H. Q.(2019).Street canyon ventilation and airborne pollutant dispersion: 2-D versus 3-DCFD simulations.Sustainable Cities and Society,50,101700.
  45. Milliez, M.,Carissimo, B.(2008).Computational Fluid Dynamical Modelling of Concentration Fluctuations in an Idealized Urban Area.Boundary-Layer Meteorol,127,241-259.
  46. Mu, D.,Gao, N. P.,Zhu, T.(2018).CFD investigation on the effects of wind and thermal wall-flow on pollutant transmission in a high-rise building.Building and Environment,137,185-197.
  47. Nazarian, N.,Kleissl, J.(2015).CFD simulation of an idealized urban environment: Thermal effects of geometrical characteristics and surface materials.Urban Climate,12,141-159.
  48. Santiago, J. L.,Borge, R.,Martin, F.,Paz, D.,Martilli, A.,Lumbreras, J.,Sanchez, B.(2017).Evaluation of a CFD-based approach to estimate pollutant distribution within a real urban canopy by means of passive samplers.Science of the Total Environment,579,46-58.
  49. Santiago, J. L.,Sanchez, B.,Quaassdorff, C.,de la Paz, D.,Martilli, A.,Martín, F.,Borge, R.,Rivas, E.,Gómez-Moreno, F. J.,Díaz, E.,Artiñano, B.,Yagüe, C.,Vardoulakis, S.(2020).Performance evaluation of a multiscale modelling system applied to particulate matter dispersion in a real traffic hot spot in Madrid (Spain).Atmospheric Pollution Research,11(1),141-155.
  50. Tao, Y.,Zhang, Z.,Ou, W. X.,Guo, J.,Pueppke, S. G.(2020).How does urban form influence PM2.5 concentrations: Insights from 350different-sized cities in the rapidly urbanizing Yangtze River Delta region of China, 1998–2015.Cities,98,102581.
  51. Tominaga, Y.,Stathopoulos, T.(2018).CFD simulations of near-field pollutant dispersion with different plume buoyancies.Building and Environment,131,128-139.
  52. Tominaga, Y.,Stathopoulos, T.(2012).CFD Modeling of Pollution Dispersion in Building Array: Evaluation of turbulent scalar flux modeling in RANS model using LES results.Journal of Wind Engineering and Industrial Aerodynamics,104-106,484-491.
  53. Wang, P.(2011).A CFD model for simulating area source pollutant dispersion in urban canyon.J. Environmental Systems,33(1),29-55.
  54. Yang, A. S.,Juan, Y. H.,Wen, C. Y,Chang, C. J.(2017).Numerical simulation of cooling effect of vegetation enhancement in a subtropical urban park.Applied Energy,192,178-200.
  55. Yang, D. Y.,Chen, Y. L.,Miao, C. H.,Liu, D.(2020).Spatiotemporal variation of PM2.5 concentrations and its relationship to urbanization in the Yangtze river delta region, China.Atmospheric Pollution Research,11(3),491-498.
  56. Zhi, H. N.,Qiu, Z.W.,Wang, W. Z.,Wang, G.,Hao, Y. Z.,Liu, Y. L.(2020).The influence of a viaduct on PM dispersion in a typical street: Field experiment and numerical simulations.Atmospheric Pollution Research,11(4),815-824.
  57. 王咏薇, Y. W.,蔣維楣, W. M.,,郭文利, W. L.,王曉雲, X. Y.(2008)。城市佈局規模與大氣環境影響的數值研究。地球物理學報,51(1),88-100。
  58. 任超, C.(2016).城市風環境評估與風道規劃─打造“呼吸城市”.北京=Beijing:中國建築工業出版社=China Architecture Publishing.
  59. 任超, C.,吳恩融, N. R.,葉頌文, S. W.,鄭世有, S. Y.(2017)。高密度城市氣候空間規劃與設計─香港空氣流通評估實踐與經驗。城市建築,1,20-21。
  60. 行政院環保署(2020)。空氣品質改善維護資訊網空氣品質指標的定義。引用於 2020 年 4 月 25 日,取自https://air.epa.gov.tw/EnvTopics/AirQuality_9.aspx。Environmental Protection Administration, Executive Yuan (2020). Air Quality Index. Retrieved April25, 2020 from https://air.epa.gov.tw/EnvTopics/AirQuality_9.aspx.
  61. 何明錦, M. J.(2013)。內政部建築研究所研究報告內政部建築研究所研究報告,新北市=New Taipei City:內政部建築研究所=Architecture and Building Research Institute, Ministry of the Interior。
  62. 何明錦, M. J.,方富民, F. M.(2015)。內政部建築研究所研究報告內政部建築研究所研究報告,新北市=New Taipei City:內政部建築研究所=Architecture and Building Research Institute, Ministry of the Interior。
  63. 吳義林, Y. L.,蔡德明, D. M.,王錫豐, X. F.(2015)。行政院環境保護署委託報告行政院環境保護署委託報告,臺北市=TPC:行政院環境保護署=Environmental Protection Administration, Executive Yuan。
  64. 周姝雯, S. W.,唐榮莉, R. L.,張育新, Y. X.,馬克明, K. M.(2017)。城市街道空氣汙染物擴散模型綜述。應用生態學報,28(3),1039-1048。
  65. 香港屋宇署=Buildings Department(2013).APP-152 可持續建築設計指引.香港=Hong Kong:香港特別行政區政府=The Government of the Hong Kong Special Administrative Region.
  66. 夏祥忠, X. Z.,陳銳林, R. L.,任海龍, H. L.,胡迪, D.,鄧小波, X. B.,張超, C.(2016)。不同高度開洞對高層建築風特性影響的數值模擬。安徽工業大學學報,33(4),354-359。
  67. 徐本宗, B. Z.(2014)。新北市,明志科技大學環境與安全衛生工程系環境工程碩士班=Department of Safety, Health and Environment Engineering, Ming Chi University of Technology。
  68. 袁磊, L.,,宛楊, Y.,何成, H. E.(2019)。基於 CFD 類比的高密度街區交通污染物分佈。深圳大學學報理工版,36(3),274-280。
  69. 張麗麗, L. L.,張光學, G. X.,楊啟岳, Q. Y.,丁麗霞, L. X.(2018)。基於 CFD模擬的城市街道 PM2.5 擴散研究。能源與環境,3,66-70。
  70. 張耀春, Y. C.,秦雲, Y.,王春剛, C. G.(2004)。洞口設置對高層建築靜力風荷載的影響研究。建築結構學報,25(4),112-123。
  71. 喬文佳, W. J.,賀啟濱, Q. B.,齊亞茹, Y. R.,劉豔華, Y. H.(2015)。交通源顆粒物對社區內環境的影響。建築熱能通風空調,34(2),37-41。
  72. 楚德見, D. J.,金阿芳, A. F.,沈廣旭, G. X.(2018)。高層建築室外顆粒污染物擴散的數值模擬研究。新疆大學學報(自然科學版),35(2),248-252。
  73. 楊俊宴, J. Y.,張濤, T.,傅秀章, X. Z.(2016).城市中心風環境與空間型態耦合機理及優化設計.南京市=Nanjing:東南大學出版社=Southeast University Press.
  74. 葛亞寧, Y. N.,徐新良, X. L.,李靜, J.,蔡紅豔, H. G.,張學霞, X. X.(2016)。北京城市建築密度分布對熱島效應的影響研究。地球信息科學,18(12),1698-1706。
  75. 雋巡環境科技股份有限公司(2021)。雋巡環境科技WindPerfectDX 概要。引用於 2021 年 6 月 2 日,取自http://www.flow-driving.com/mobile/software_summary.php。Flow-drivingEnvironmental Tech. Introduction to WindperfectDX. Retrieved April 2, 2021 from http://www.flowdriving.com/mobile/software_summary.php.
  76. 劉加平, J. P.(2016).城市環境物理.北京=Beijing:中國建築工業=China Architecture Publishing.
  77. 歐陽嶠暉, Y. J. H.(2005).都市環境學.臺北=Taipei:詹氏書局=Chan’s Arch-Publishing.
  78. 鄭穎生, Y. S.,史源, Y.,任超, C.,吳恩融, N. G.(2016)。改善高密度城市區域通風的城市形態優化策略研究—以香港新界大埔墟為例。國際城市規劃,31(5),68-75。
  79. 蕭慧娟, H. J.(2007).空氣品質監測.臺北市=Taipei:財團法人孫運璿學術基金會=Sunyunsuan Academic Foundation.
  80. 聯合國經濟和社會事務部=United Nations Economic and Social Council(2019).2018 年世界城市化前景修訂.紐約=NY, USA:聯合國經濟和社會事務部=聯合國經濟和社會事務部.
  81. 觀測資料查詢 CODiS(2020) 。 臺北測站(466920)2010~2018 年氣象數據。引用於 2020 年 4月 25 日,取自https://e-service.cwb.gov.tw/HistoryDataQuery/index.jsp。CWB Observation Data Inquire System. (2020). Meteorological data of Taipei Station (466920) from 2010 to 2018. Retrieved April 25, 2020 from https://e-service.cwb.gov.tw/HistoryDataQuery/index.jsp.
  82. 黄巍, W.,龍恩深, E. S.(2014)。成都 PM2.5 與氣象條件的關係及城市空間形態的影響。中國環境監測,4,93-99。