题名

AIoT影像感測器在建築物安全應用與效益研究

并列篇名

Application and Benefit Evaluation of AIoT Image Sensing for Building Safety Monitoring

DOI

10.53106/101632122022120122001

作者

王榮進(Rong-Jin Wang);余文德(Wen-Der Yu);廖珗洲(Hsien-Chou Liao);張憲寬(Hsien-Kuan Chang);林子怡(Zi-Yi Lin)

关键词

人工智慧物聯網 ; 智慧建築 ; 智慧安全監測 ; 效益分析 ; AIoT ; Smart Building ; Intelligent Safety Monitoring ; Benefit Evaluation

期刊名称

建築學報

卷期/出版年月

122期(2022 / 12 / 30)

页次

1 - 20

内容语文

繁體中文;英文

中文摘要

因應近年來人工智慧深度學習技術在電腦視覺、影像辨識上快速發展,使得原本必須透過雲端平台進行決策判斷之任務,已經可以由AIoT感測器端的邊緣運算來提供即時影像辨識結果,不但加速決策之即時性,亦有助於改善資訊之安全性。本研究探討如何應用AIoT影像感測器(AIoT-IS)提升智慧建築之效能,及其在未來智慧生活空間之應用潛力。本文透過次級資料分析、專家訪談與效益分析模型設計,共歸納AIoT-IS於建築生命週期四個階段18種可能應用情境類型;並提出「建築智慧科技應用成本效益分析模式CAMITA)」以做為AIoT-IS之應用效益分析方法。經兩個模擬案例效益評估試算發現:在「建築施工中工地安全監控」案例中,淨現值指標(NPVI)為20.21%,而益本比(BCR)則為5.10;另外,在「建築使用營運階段之智慧社區安全管理」案例中,其NPVI為12.63%,而BCR則為2.10;可見AIoT-IS在建築物安全應用確實具有明顯效益。另外,透過專家訪談亦發現,AIoT-IS之應用也存在著潛在之社會風險;不同利害關係人對於AIoT-IS於建築物安全應用之期待效益、成本接受度、未來發展潛力,以及社會風險之感受度亦皆有不同。本文最後針對建築安全之利害關係人對於AIoT-IS於建築物安全應用之相關議題,歸納出具體建議,以提供建築工程不同參與單位之參考。

英文摘要

Thanks to the fast development of Deep Learning and Computer Visualization, the traditional cloud-based decision-making can be carried out with the edge-computing of AIoT Image Sensors (AIoT-IS), and thus improve the timeliness and security of image recognition. This study aims to investigate the potential scenarios and the associated benefits of AIoT-IS applications. Through literature review, expert interviews, and benefit analysis model development, this study summarizes 18 AIoT-IS application scenarios categorizedinto four different phases of building lifecycle and a "Cost/benefit Analysis Model for Intelligent building Technology Adoption, CAMITA)" is proposed for benefit evaluation of AIoT-IS for building safety monitoring. According to the results of two simulated case studies, AIoT-IS achieves significant benefits, with Net Present Value Index (NPVI) of 20.21% and Benefit/Cost Ratio (BCR) of 5.10 in "Case (I)-AIoT image sensing for construction site safety monitoring", and also achievesNPVI of 12.63% and BCR of 2.10 in "Case (II)-AIoT images sensing adoption in the security control of smart community." The interviews with the domain experts also point out potential threats and risks while adopting AIoT image sensing in building safety monitoring. Different interviewees (stakeholders of buildings) have different perspectives on the benefits and risks of such an innovative technology from the angles of their priority issues, expected benefits, application limitations and implementation obstacles. Finally, suggestions are summarized for stakeholders of buildings regarding the safety monitoring the application of AIoT-IS to provide references for different interested parties of building projects.

主题分类 工程學 > 土木與建築工程
参考文献
  1. 余文德, W.D.,廖珗洲, H.C.,蕭文達, W.T.,張憲寬, H.K.,吳定餘, T.W.,林楨中, C.C.(2020)。混合式機器學習方法於施工人員個人安全裝備即時辨識之應。技術學刊,34(4),115-165。
    連結:
  2. 周國村, G.T.,袁建中, B.J.C.(2014)。應用決策實驗室分析法(DEMATEL)與網路層級分析法(ANP)在研發專案計畫評選。中山管理評論,22(3),543-572。
    連結:
  3. 廖珗洲, H.C.,余文德, W.D.,蕭文達, W.T.,張憲寬, H.K.,蔡智弓, C.G.,林楨中, C.C.(2021)。運用深度學習技術之影像語意分割於施工中電梯直井墜落風險監控的應用。技術學刊,36(1),1-12。
    連結:
  4. 智慧建築評估手冊 (2016) 。http://ib.tabc.org.tw/modules/filelist/index.php/main/flist/2,台灣建築中心。TABC (2016). Smart Building Assessment Handbook, website:http://ib.tabc.org.tw/modules/filelist/index.php/main/flist/2, Taiwan Architecture and Building Center.
  5. Report of the Architectural and Building Research InstituteReport of the Architectural and Building Research Institute,未出版
  6. Arfi, W. B.,Nasr, I. B.,Khvatova, T.,Zaied, Y. B.(2021).Understanding acceptance of eHealthcare by IoT natives and IoT immigrants: An integrated model of UTAUT, perceived risk, and financial cost.Technological Forecasting and Social Change,163,120437.
  7. Atzori, L.,Iera, A.,Morabitoc, G.(2010).The internet of things: A survey.Computer Networks,54(15),2787-2805.
  8. Blank, L.,Tarquin, A.(2012).Engineering Economy.NY, USA:McGraw Hill.
  9. Bochkovskiy, A.,Wang, C. Y.,Liao, H. Y. M.(2020).,未出版
  10. Boominathan, L.,Kruthiventi, S. S. S.,Babu, R. V.(2016).CrowdNet: A deep convolutional network for dense crowd counting.Proceedings of the 24th ACM international conference on Multimedia,Amsterdam, The Netherlands Available:
  11. Burnett, J. D.,Wing, M. G.(2018).A low-cost near-infrared digital camera for fire detection and monitoring.International Journal of Remote Sensing,39(3),741-753.
  12. Chang, S.T.,Wen, S. L.,Yu, B. J.(2020).Report of the Architectural and Building Research Institute, MOIReport of the Architectural and Building Research Institute, MOI,未出版
  13. Chen, L.C.,Papandreou, G.,Kokkinos, I.,Yuille, A. L.(2017).,未出版
  14. Chor, K. H. B.,Wisdom, J. P.,Olin, S. C. S.,Hoagwood, K. E.,Horwitz, S. M.(2015).Measures for predictors of innovation adoption.Administration and Policy in Mental Health and Mental Health Services Research,42(5),545-573.
  15. Cognex (2021).IN-SIGHT D900 視覺系統.Retrieved on Jun. 2021 from https://www.cognex.com/zh-tw/products/deep-learning/in-sight-d900.
  16. Ding, L.,Fang, W.,Luo, H.,Love, P. E. D.,Ouyang, X.(2018).A deep hybrid learning model to detect unsafe behavior: Integrating convolution neural networks and long short-term memory.Automation in Construction,86,118-124.
  17. Fang, Q.,Li, H.,Luo, X.,Ding, L.,An, W.(2018).Detecting non-hardhat-use by a deep learning method from far-field surveillance videos.Automation in Construction,85,1-9.
  18. Fang, W. L.,Ding, L. Y.,Luo, H. B.,Love, P. E. D.(2018).Falls from heights: A computer vision-based approach for safety harness detection.Automation in Construction,91,53-56.
  19. Fang, W. L.,Ding, L. Y.,Luo, H. B.,Love, P. E. D.(2018).Falls from heights: A computer vision-based approach for safety harness detection.Automation in Construction,91,53-56.
  20. Fontela, E.,Gabus, A.(1974).Technical Report No. 2, Structural Analysis of the World ProblematiqueTechnical Report No. 2, Structural Analysis of the World Problematique,Battelle Geneva Research Institute.
  21. Gao, J. L.,Yuan, Z. W.,Liu, X. W.,Xia, X. M.,Huang, X. J.,Dong, Z. F.(2016).Improving air pollution control policy in China—A perspective based on cost–benefit analysis.Science of The Total Environment,543, Part A,307-314.
  22. Hsu, T. Y.,Kuo, X. J.(2020).A Stand-alone smart camera system for online post-earthquake building safety assessment.Sensors,20(12),3374.
  23. Huang, Q.,Hao, K.(2020).The development of artificial intelligence (AI) algorithms to avoid potential baby sleep hazards in smart buildings.Proceedings of Construction Research Congress 2020
  24. Khoa, T. A.,Man, M. M.,Nguyen, T.Y.,Nguyen, V.,Nam, N. H.(2019).Smart agriculture using IoT multi-sensors: A novel watering management system.J. Sens. Actuator Netw,8(45)
  25. Kong, X.,Meng, Z.,Meng, L.,Tomiyama, H.(2018).A privacy protected fall detection IoT System for elderly persons using depth camera.Proceedings of 2018 International Conference on Advanced Mechatronic Systems (ICAMechS)
  26. Lai, C.,Jiang, L.(2018).An intelligent baby care system based on IoT and deep learning techniques.International Journal of Electronics and Communication Engineering,12(1),81-85.
  27. Lin, S.S.,Shen, S.L.,Zhou, A.,Xu, Y.S.(2021).Risk assessment and management of excavation system based on fuzzy set theory and machine learning methods.Automation in Construction,122,103490.
  28. Ma, Y.,Feng, X.,Jiao, J.,Peng, Z.H.,Qian, S.,Xue, H.,Li, H.(2020).Smart fire alarm system with person detection and thermal camera.Cham, 2020: Springer International Publishing, in Computational Science –ICCS 2020
  29. McCay, K. D.,Ho, E. S. L.,Shum, H. P. H.,Fehringer, G.,Marcroft, C.,Embleton, N. D.(2020).Abnormal infant movements classification with deep learning on pose-based features.IEEE Access,8,51582-51592.
  30. Muhammad, K.,Ahmad, J.,Lv, Z.,Bellavista, P.,Yang, P.,Baik, S. W.(2018).Efficient deep CNN-Based fire detection and localization in video surveillance applications.IEEE Transactions on Systems, Man, and Cybernetics: Systems,49(7),1419-1434.
  31. Nvidia (2021). Embedded Systems Developer Kits & Modules from NVIDIA Jetson. NVIDIA Jetson. Website: https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/, accessed 2021/03.
  32. OECD (2021). OECD Guidelines on the Protection of Privacy and Transborder Flows of Personal Data. Retrieved on Jun. 2021from https://www.oecd.org/digital/ieconomy/oecdguidelinesontheprotectionofprivacyandtransborderflowsofpersonaldata.htm.
  33. Ou Yang, Y. P.,Shieh, H. M.,Leu, J. D.,Tzeng, G. H.(2008).A novel hybrid MCDM model combined with DEMATEL and ANP with applications.International Journal of Operations Research,5(3),160-168.
  34. Redmon, J.,Divvala, S.,Girshick, R.,Farhadi, A.(2016).You only look once: Unified, real-time object detection.Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
  35. Saaty, T. L.(1980).Analytic Hierarchy Process: Planning, Priority Setting, Resource Allocation.New York:McGraw-Hill.
  36. Saaty, T. L.(1996).Decision Making with Dependence and Feedback: The Analytic Network Process.Pittsburgh, PA:RWS Publications.
  37. Santiputri, M.,Tio, M.(2018).IoT-based gas leak detection device.International Conference on Applied Engineering (ICAE)
  38. TensorFlow (2021). TensorFlow. Website: https://www.tensorflow.org/, accessed 2021/03.
  39. The Hastings Center(2018).Governance of Emerging Technologies: Aligning Policy Analysis with the Public's Values.Special Report,48(S1)
  40. Todorović, B. M.,Samardžija, D.(2017).Road lighting energy-saving system based on wireless sensor network.Energy Efficiency,10,239-247.
  41. Todorović, B. M.,Samardžija, D.(2017).Road lighting energy-saving system based on wireless sensor network.Energy Efficiency,10,239-247.
  42. Ullah, W.,Ullah, A.,Haq, I. U.,Muhammad, K.,Sajjad, M.,Baik, S. W.(2020).CNN features with bi-directional LSTM for real-time anomaly detection in surveillance networks.Multimedia Tools and Applications
  43. Wang Y,Bao, T.,Ding, C.,Zhu, M.(2017).Face recognition in real-world surveillance videos with deep learning method.2nd International Conference on Image. Vision and Computing (ICIVC),Chengdu:
  44. Wang, G.,Song, J.(2017).The relation of perceived benefits and organizational supports to user satisfaction with building information model (BIM).Computers in Human Behavior,68,493-500.
  45. Wang, P.,Lien, S.,Lee, M.(2019).A Learning-Based Prediction Model for Baby Accidents.2019 IEEE International Conference on Image Processing (ICIP)
  46. Warfield, J. N. (Ed.)(1976).Societal Systems, Planning, Policy and Complexity.New York:John Wiley and Sons.
  47. Wilson, C.,Hargreaves, T.,Hauxwell-Baldwin, R.(2017).Benefits and risks of smart home technologies.Energy Policy,103,72-83.
  48. Wisdom, J. P.,Chor, K. H. B.,Hoagwood, K. E.,Horwitz, S. M.(2013).Innovation adoption: A review of theories and constructs.Administration and Policy in Mental Health and Mental Health Services Research,41,480-502.
  49. Yang, C. H.,Lee, K. C.,Li, S. E.(2020).A mixed activity-based costing and resource constraint optimal decision model for IoT-oriented intelligent building management system portfolios.Sustainable Cities and Society,60,102142.
  50. Yu, W. D.,Chang, P. L.,Yao, H. H.,Liu, S. J.(2009).KVAM: Model for Measuring Knowledge Management Performance of Engineering Community of Practice.Construction Management and Economics,27(8),733-747.
  51. Zhang, P.,Chen, R. P.,Dai, T.,Wang, Z. T.,Wu, K.(2021).An AIoT-based system for real-time monitoring of tunnel construction.Automation in Construction,109,103766.
  52. Zhou, J. T.,Du, J.,Zhu, H.,Peng, X.,Liu, Y.,Goh, R. S. M.(2019).AnomalyNet: An Anomaly Detection Network for Video Surveillance.IEEE Transactions on Information Forensics and Security,14(10),2537-2550.
  53. Zhou, S.,Shen, W.,Zeng, D.,Fang, M.,Wei, Y.,Zhang, Z.(2016).Spatial–temporal convolutional neural networks for anomaly detection and localization in crowded scenes.Signal Processing: Image Communication,47,358-368.
  54. 王榮進, R. J.,沈揚庭, Y. T.(2020)。政部建築研究所報告政部建築研究所報告,未出版
  55. 台北市政府 (2021) 。智慧城市 1+7 落地方案執行成效。Website: http://tccmis.tcc.gov.tw/upload/OM_HTML/Attach/3301 3/15026378_1103006125_1_ATTACH1.pdf,查詢日期: 2021/6。Taipei City Government (2021). “Implementation results of smart city 1+7 landing plan.”Website: http://tccmis.tcc.gov.tw/upload/OM_HTML/Attach/33013/15026378_1103006125_1_ATTACH1.pdf, accessed 2021/06.
  56. 凌華科技 (2021) 。工業機器人危害預防解決方案 | AI智慧相機應用案例 。 Website: https://www.adlinktech.com/tw/AI_Vision_Case_Smart_Camera_Robot_Hazard_Prevention, 查詢日期 : 2021/6。ADLINK (2021). “Industrial robot hazard prevention solution—AI smart camera application case.” Website: https://www.adlinktech.com/tw/AI_Vision_Case_Smart_Camera_Robot_Hazard_Prevention, Accessed date: 2021/6.
  57. 張怡文(2018)。內政部建築研究所自行研究報告內政部建築研究所自行研究報告,新北市:內政部建築研究所。
  58. 張怡文, Y.W.(2016)。內政部建築研究所研究報告內政部建築研究所研究報告,新北市:內政部建築研究所。
  59. 張效通,溫琇玲,游璧菁(2020)。內政部建築研究所委託研究報告內政部建築研究所委託研究報告,新北市:內政部建築研究所。
  60. 溫琇玲, S.L.,游璧菁, B.J.(2019)。內政部建築研究所委託研究報告內政部建築研究所委託研究報告,新北市:內政部建築研究所。
  61. 羅時麒, S.C.,陳嘉懿, J.Y.(2018)。內政部建築研究所研究報告內政部建築研究所研究報告,新北市:內政部建築研究所。