题名

考量多目標最佳化及建築師規劃偏好之街屋規劃效率評估

并列篇名

Planning Efficiency Assessments of Street Houses considering the Tradeoffs of Multi-Objective Optimization Problems and Architect's Planning Preferences

DOI

10.53106/101632122023060124001

作者

陳清山(Ching-Shan Chen)

关键词

街屋 ; 模糊理論 ; 無異曲線 ; 效率前緣 ; 資料包絡分析法 ; Street House ; Fuzzy Theory ; Indifference Curve ; Efficient Frontier ; Data Envelopment Analysis

期刊名称

建築學報

卷期/出版年月

124期(2023 / 06 / 30)

页次

1 - 20

内容语文

繁體中文;英文

中文摘要

一般而言,建築師於規劃設計建築物時,經常將建築物之機能、安全、經濟及美觀列為四項重要規劃目標。但這些目標彼此之間常產生衝突,造成建築師規劃設計建築物時的無所適從,如何權衡這些衝突目標即為多目標最佳化問題。此外,目前的建築物規劃效率評估方法,大部份僅客觀地評估建築物單一目標的效率,較少考量建築師的主觀規劃偏好,無法反應建築物規劃設計具有主客觀因素的本質,如何發展兼顧主客觀因素的規劃效率評估方法,乃成為一個值得研究的課題。據營建署2015年住宅調查資料統計,街屋約占住宅類型中49.20%之比例,本論文即以此重要的建築型態為研究對象,探討建築師於規劃設計階段時,如何有效解決多目標最佳化問題。所採用的研究方法包含:模糊理論、無異曲線、效率前緣以及資料包絡分析法。模糊理論可發展建築師的偏好函數;無異曲線可定義建築師的規劃偏好及權重;效率前緣理論則可以從街屋案例中,以資料包絡分析法求出較有效率的一群案例,此群案例可建構出街屋之效率前緣曲線,做為建築師評估街屋規劃效率的依據。本論文即以上述理論,發展新的規劃效率評估方法。並以台灣地區的街屋為實證案例,以詮釋所發展的方法論。從研究結果中可得知,本論文所發展的方法論,可適切解決建築物多目標最佳化及建築師規劃偏好之問題。研究成果可提供建築師使用,所發展的研究方法亦可供學術界後續研究的參考。

英文摘要

Generally speaking, architects often regard the function, safety, economy and aesthetics of the buildings as four important targets. However, these planning targets usually conflict with each other, which often confuses architects when planning buildings. How to trade off these conflicting targets is a multi-objective optimization problem (MOOP). Besides, most of the current building efficiency assessment methods only objectively evaluate the single target of building efficiency, but seldom consider the subjective planning factors of architects. How to develop a planning efficiency evaluation method that integrates subjective and objective factors has become a topic worthy of exploration. According to the statistics of the 2015 housing survey of Construction and Planning Agency, street houses occupied 49.20% of the housing types. This paper takes this important building type as the research object to study how architects can effectively solve the MOOP during the planning and design stage. The research methods include: fuzzy theory, indifference curve, efficient frontier and data envelopment analysis. Through the principles of fuzzy theory, the architect's preference function can be developed. With the help of indifference curve, the planning preferences and weights of architects can be defined. The efficient frontier theory is used to find the optimal efficient cases from the street houses via data envelopment analysis. The efficient frontier curve of street houses can be constructed by this group of cases, and can be used as a basis for architects when evaluating the planning efficiencies of the street houses. This paper developed a new planning efficiency assessment method based on the above theories, taking the street houses in Taiwan as empirical cases to interpret the developed methodologies. The research results show that the methodologies developed in this paper can properly solve the buildings' multi-objective optimization problems and the architects' planning preferences. These results can be used by architects, and the developed methodologies can also be utilized as a reference for academia.

主题分类 工程學 > 土木與建築工程
参考文献
  1. 杜怡萱, Y. H.,葉桐, T.(2020)。以 2018 花蓮地震震害建物探討耐震初評方法之有效性。結構工程,35(2),43-64。
    連結:
  2. 邱建國, C. K.,林宜鋒, Y. F.(2014)。劣化鋼筋混凝土建築物生命週期維護管理決策支援系統。建築學報,88,1-18。
    連結:
  3. 青井哲人, A.,張亭菲, T. F.,楊朝傑, C. C.(2018)。以竹為特色的市鎮─臺灣濁水溪流域的內陸河港市鎮群與竹造街屋的歷史意義。建築學報,104,103-121。
    連結:
  4. 胡宗雄, T. H.,徐明福, M. F.(2003)。日治時期台南市街屋亭仔腳空間形式之研究。建築學報,44,97-115。
    連結:
  5. 陳清山, C. S.(2022)。街屋耐震評估模型之研究─以人工智慧及敏感度分析理論為研究方法。建築學報,120,17-38。
    連結:
  6. 趙又嬋, Y. C.,鄭維亮, W. L.(2015)。街屋再利用之軀體與裝修建材減碳評估─以餐飲類空間為例。建築學報,91,63-79。
    連結:
  7. Azad, S. K.,Aminbakhsh, S.(2022).Ε-constraint guided stochastic search with successive seeding for multi-objective optimization of large-scale steel double-layer grids.Journal of Building Engineering,46,103767.
  8. Carlos, A. Coello Coello(1996).New Orleans, L.A.,Department of Computer Science, Tulane University.
  9. Charnes, A.,Cooper, W. W.,Rhodes, E.(1978).Measuring the efficiency of decision making units.European Journal of Operational Research,12(6),429-444.
  10. Cheng, M. Y.,Chen, C. S.(2014).Preliminary planning efficiency evaluation for school buildings considering the tradeoffs of MOOP and planning preferences.Journal of Civil Engineering and Management,20(2),211-222.
  11. Cheng, M. Y.,Chen, C. S.(2011).Optimal planning model for school buildings considering the tradeoff of seismic resistance and cost effectiveness: A Taiwan case study.Structural and Multidisciplinary Optimization,43(6),863-879.
  12. Chiu, C. K.,Sung, H. F.,Chiou, T. C.(2022).Post-earthquake preliminary seismic assessment method for low-rise RC buildings in Taiwan.Journal of Building Engineering,46,103709.
  13. Dang, H. T.,Pitts, A.(2020).Urban morphology and outdoor microclimate around the "Shophouse" dwellings in Ho Chi Minh City, Vietnam.Buildings,10(3),40.
  14. Evans, G.W.(1984).An overview of techniques for solving mathematical programs.Management Science,30(11),1268-1282.
  15. Harding, J.,Brandt-Olsen, C.(2018).Biomorpher: Interactive evolution for parametric design.International Journal of Architectural Computing,16(2),144-163.
  16. Johan, A.(2000).Technical Report of Department of Mechanical Engineering, Linkoping UniversityTechnical Report of Department of Mechanical Engineering, Linkoping University,Linkoping, Sweden:Linkoping University.
  17. Kanyilmaz, A.,Tichell, P. R. N.,Loiacono, D.(2022).A genetic algorithm tool for conceptual structural design with cost and embodied carbon optimization.Engineering Applications of Artificial Intelligence,112,104711.
  18. Kien, T.(2008)."Tube House" and "Neo Tube House" in Hanoi: A comparative study on identity and typology.Journal of Asian Architecture and Building Engineering,7(2),255-262.
  19. Kristin, L. W.,Erik, K. A.(1989).Computations with imprecise parameters in engineering designs: Background and theory.ASME Journal of Mechanisms, Transmissions, and Automation in design,111,616-625.
  20. Larsen, J. E.(2012).Surface street traffic volume and single-family house price.Transportation Research Part D: Transport and Environment,17(4),317-320.
  21. Marsault, X.(2013).A multiobjective and interactive genetic algorithm to optimize the building form at an early design stages.Proceedings of BS2013: 13th Conference of International Building Performance Simulation Association,Chambery, France:
  22. Mukkavaara, J.,Shadram, F.(2021).An integrated optimization and sensitivity analysis approach to support the life cycle energy trade-off in building design.Energy and Buildings,253,111529.
  23. Pazouki, M.,Rezaie, K.,Bozorgi-Amiri, A.(2021).A fuzzy robust multi-objective optimization model for building energy retrofit considering utility function: A university building case study.Energy and Buildings,241,110933.
  24. Tran, T. T.,Thi, V. D.,Oudjene, M.,Khelifa, M.,Girods, P.,Debal, M.,Jannot, Y.(2022).Fire structural performance of thermo-mechanically compressed spruce timber by means experiments and a three-step multi-reactions pyrolysis 3D-finite element modelling.Construction and Building Materials,320,126100.
  25. Tu, X.,He, Z.,Jiang, B.,Du, B.,Qi, Z.,Huang, G.(2022).Strength reserve-based seismic optimization for precast concrete frames with hybrid semi-rigid connections.Structural and Multidisciplinary Optimization,65(4),1-21.
  26. Waibel, C.,Wortmann, T.,Evins, R.,Carmeliet, J.(2019).Building energy optimization: An extensive benchmark of global search algorithms.Energy and Buildings,187,218-240.
  27. Wei, Z.,Nie, J.(2021).Research on intelligent design mechanism of landscape lamp with regional cultural value based on interactive genetic algorithm.Concurrency and Computation: Practice and Experience,e6273.
  28. 邱聰智, T. C.,黃世建, S. J.,宋嘉誠, J. C.,鍾立來, L. L.(2014)。低矮型街屋耐震能力快速評估法之開發與驗證。結構工程,29(4),65-87。