题名

橢圓形模糊系統於台灣股市股價預測之應用

并列篇名

Stock Price Forecasting in Taiwan Using Ellipsoidal Fuzzy System

DOI

10.29977/JCIIE.200403.0005

作者

白炳豐(Ping-Feng Pai);林國平(Kuo-Ping Lin);王正賢(Jean-Shyan Wang)

关键词

橢圓形模糊系統 ; 可加模糊系統 ; 非監督式學習 ; 監督式學習 ; 共軛梯度學習法 ; ellipsoidal fuzzy system ; scale conjugate gradient ; supervised learning

期刊名称

工業工程學刊

卷期/出版年月

21卷2期(2004 / 03 / 01)

页次

146 - 155

内容语文

繁體中文

中文摘要

橢圓形模糊系統(ellipsoidal fuzzy system,EFS)為一可加模糊系統(additive fuzzysystem),具有非監督式(unsupervised)學習與監督式(supervised)學習之功能,此模式已成功的應用於控制系統與型態辨識(pattern recognition)問題之研究。本研究将以橢圓形模糊系統為基礎,應用可加模糊系統對不確定問題之趨近(approximating)能力,並以非監督式群聚(clustering)資料與監督式調整(tune)資料的特性,利用共軛梯度(scaleconjugate gradient)之監督式學習法則,以預測台灣股票市場之股價。本文所提出之橢圓形模糊系統将應用於預測台灣七種不同類股之七家上市公司股價,結果顯示橢圓形模糊系统於預測短期股價表現較其他三種現有之方法好。

英文摘要

Forecasting of stock market is one of the most important topics in business.The ellipsoidalfuzzy system learning with and without supervision has been successfully applied in controlsystems and pattern recognition problems.In this study,the ellipsoidal fuzzy system ismodified to examine the feasibility for predicting stock market in Taiwan.A scaleconjugate gradient learning method is borrowed to speed the training process in supervisedlearning.Three existing forecasting approaches are used to compare the performance.Numerical results show that the ellipsoidal fuzzy system outperforms the other threemethods in forecasting stock prices in Taiwan.

主题分类 工程學 > 工程學總論
参考文献
  1. Baba, N.,M. Kozaki(1992).An intelligent forecasting system of stock price using neural networks.Proceedings of International Joint Conference on Neural Networks,1,371-377.
  2. Callen, L.,C. Y. Kwan,C. Y. Yip,Y. Yuan(1996).Neural network forecasting of quarterly accounting earnings.International Journal of Forecasting,12(4),475-482.
  3. Cheung, Y. M.,Z. H. Lai,L. Xu(1996).Application of adaptive RPCL-CLP with trading system to foreign exchange investment.Proceedings of IEEE International Conference on Neural Networks,4,2033-2038.
  4. Cristea, A. I.,T. Okamoto(1998).Energy function construction and implementation for stock exchange prediction NNs.Proceedings of International Conference on Knowledge-Based Intelligent Electronic Systems,3,403-410.
  5. Delurgio, S. A.(1997).Forecasting Principles and Applications.
  6. Dickerson, J. A.(1997).Learning optimal fuzzy rules using simulated annealing.Proceedings of Annual Meeting of the North American.
  7. Dickerson, J. A.,B. Kosko(1993).Hybrid fuzzy ellipsoidal learning.Proceedings of International Joint Conference on Neural Networks,3,2853-2856.
  8. Donaldson, R. G.,M. Kamstra(1999).Neural network forecast combining with interaction effects.Journal of the Franklin Institute,336(2),227-236.
  9. Kamijo, K.,T. Tanigawa(1990).Stock price pattern recognition-a recurrent neural network approach.Proceedings of International Joint Conference on Neural Networks,1,215-211.
  10. Kim, H. M.,B. Kosko(1997).Neural fuzzy motion estimation and compensation.IEEE Transactions on Signal Processing,45(10),2515-2532.
  11. Kim, H. M.,B. Kosko,J. A. Dickerson(1996).Fuzzy throttle and brake control for platoons of smart cars.Fuzzy Sets and Systems,84(3),209-234.
  12. Kim, H. M.,S. H. Chun(1998).Graded forecasting using an array of bipolar predictions: application of probabilistic neural to a stock market index.International Journal of Forecasting,14,323-337.
  13. Kim, K. J.,I. Han(2000).Genetic algorithms approach to feature discretization in artificial neural networks for the prediction of stock price index.Expert Systems with Application,19(2),125-132.
  14. Kimoto, T.,K. Asakawa(1990).Stock market prediction system with modular neural networks.Proceedings of International Joint Conference on Neural Networks,1,1-6.
  15. Kosko, B.(1992).Fuzzy systems as universal approximators.Proceedings of IEEE International Conference on Fuzzy Systems,1153-1162.
  16. Kosko, B.(1996).Fuzzy Engineering.
  17. Kosko, B.(1992).Neural network and fuzzy system.Prentice Hall.
  18. Leigh, W.,M. Paz,R. Purvis(2002).An analysis of a hybrid neural network and pattern recognition technique for predicting short-term increases in the NYSE composite index.The International Journal of Management Science,30,69-76.
  19. Liu, H.,R. Setiono(1996).Dimensionality reduction via discretization.Knowledge-Based Systems,9(1),67-72.
  20. Moller, M.(1993).A scaled conjugate gradient algorithm for fast supervised learning.Neural Networks,6(4),525-533.
  21. Oh, K. J.,K. K. Kim(2002).Analyzing stock market tick data using piecewise nonlinear model.Expert Systems with Application,22(3),249-255.
  22. Saad, W.,V. Prolchorov,C. Wunsch, Ⅱ(1998).Comparative study of stock trend prediction using time delay, recurrent and probabilistic neural networks.IEEE Transactions on Neural Networks.
  23. Takahashi, T.,R. Tamada,K. Nagasaka(1998).Multiple line-segments regression for stock prices and long-range forecasting system by neural networks.Proceedings of SICE Annual Conference.
被引用次数
  1. 陳建璋、吳守從(2009)。應用灰色理論探討墾丁國家公園遊客數量變化。人文社會科學研究,3(2),149-169。
  2. (2007)。應用灰色理論探討藤枝國家森林遊樂區遊客數量之變化。樹德科技大學學報,9(1),23-40。